Сокращение корней. Формулы степеней и корней

Чтобы успешно использовать на практике операцию извлечения корня, нужно познакомиться со свойствами этой операции.
Все свойства формулируются и доказываются только для неотрицательных значений переменных, содержащихся под знаками корней.

Теорема 1. Корень n-й степени (n=2, 3, 4,...) из произведения двух неотрицательных чипсел равен произведению корней n-й степени из этих чисел:

Замечание:

1. Теорема 1 остается справедливой и для случая, когда подкоренное выражение представляет собой произведение более чем двух неотрицательных чисел.

Теорема 2. Если , и n - натуральное число, большее 1, то справедливо равенство


Краткая (хотя и неточная) формулировка, которую удобнее использовать на практике: корень из дроби равен дроби от корней.

Теорема 1 позволяет нам перемножать только корни одинаковой степени , т.е. только корни с одинаковым показателем.

Теорема 3.Если , k - натуральное число и n - натуральное число, большее 1, то справедливо равенство

Иными словами, чтобы возвести корень в натуральную степень, достаточно возвести в эту степень подкоренное выражение.
Это - следствие теоремы 1. В самом деле, например, для к = 3 получаем: Точно так же можно рассуждать в случае любого другого натурального значения показателя к.

Теорема 4.Если , k, n - натуральные числа, большее 1, то справедливо равенство

Иными словами, чтобы извлечь корень из корня, достаточно перемножить показатели корней.
Например,

Будьте внимательны! Мы узнали, что над корнями можно осуществлять четыре операции: умножение, деление, возведение в степень и извлечение корня (из корня). А как же обстоит дело со сложением и вычитанием корней? Никак.
Например, вместо нельзя написать В самом деле, Но ведь очевидно, что

Теорема 5.Если показатели корня и подкоренного выражения умножить или разделить на одно и то же натуральное число, то значение корня не изменится, т.е.



Примеры решения заданий


Пример 1. Вычислить

Решение.
Воспользовавшись первым свойством корней (теорема 1), получим:

Пример 2. Вычислить
Решение. Обратим смешанное число в неправильную дробь.
Имеем Воспользовавшись вторым свойством корней (теорема 2 ), получим:


Пример 3. Вычислить:

Решение. Любая формула в алгебре, как вам хорошо известно, используется не только «слева направо», но и «справа налево». Так, первое свойство корней означает, что можно представить в виде и, наоборот, можно заменить выражением . То же относится и ко второму свойству корней. Учитывая это, выполним вычисления.

Известно, что знак корня является квадратным корнем из некоторого числа. Однако знак корня означает не только алгебраическое действие, но и применяется в деревообрабатывающем производстве - в расчете относительных размеров.

Если вы хотите узнать, как умножить корни «с» или «без» множителей, то эта статья для вас. В ней мы рассмотрим методы умножения корней:

  • без множителей;
  • с множителями;
  • с разными показателями.

Метод умножения корней без множителей

Алгоритм действий:

Убедиться, что у корня одинаковые показатели (степени). Вспомним, что степень записывается слева над знаком корня. Если нет обозначения степени, это значит, что корень квадратный, т.е. со степенью 2, и его можно умножать на другие корни со степенью 2.

Пример

Пример 1: 18 × 2 = ?

Пример 2: 10 × 5 = ?

Пример

Пример 1: 18 × 2 = 36

Пример 2: 10 × 5 = 50

Пример 3: 3 3 × 9 3 = 27 3

Упростить подкоренные выражения. Когда мы умножаем корни друг на друга, мы можем упростить полученное подкоренное выражение до произведения числа (или выражения) на полный квадрат или куб:

Пример

Пример 1: 36 = 6 . 36 - квадратный корень из шести (6 × 6 = 36) .

Пример 2: 50 = (25 × 2) = (5 × 5) × 2 = 5 2 . Число 50 раскладываем на произведение 25 и 2 . Корень из 25 - 5 , поэтому выносим 5 из-под знака корня и упрощаем выражение.

Пример 3: 27 3 = 3 . Кубический корень из 27 равен 3: 3 × 3 × 3 = 27 .

Метод умножения показателей с множителями

Алгоритм действий:

Умножить множители. Множитель - число, которое стоит перед знаком корня. В случае отсутствия множителя, он, по умолчанию, считается единицей. Далее необходимо перемножить множители:

Пример

Пример 1: 3 2 × 10 = 3 ? 3 × 1 = 3

Пример 2: 4 3 × 3 6 = 12 ? 4 × 3 = 12

Умножить числа под знаком корня. Как только вы перемножили множители, смело умножайте числа, стоящие под знаком корня:

Пример

Пример 1: 3 2 × 10 = 3 (2 × 10) = 3 20

Пример 2: 4 3 × 3 6 = 12 (3 × 6) = 12 18

Упростить подкоренное выражение. Далее следует упростить значения, которые стоят под знаком корня, - требуется вынести соответствующие числа за знак корня. После этого, необходимо перемножить числа и множители, которые стоят перед знаком корня:

Пример

Пример 1: 3 20 = 3 (4 × 5) = 3 (2 × 2) × 5 = (3 × 2) 5 = 6 5

Пример 2: 12 18 = 12 (9 × 2) = 12 (3 × 3) × 2 = (12 × 3) 2 = 36 2

Метод умножения корней с разными показателями

Алгоритм действий:

Найти наименьшее общее кратное (НОК) показателей. Наименьшее общее кратное - наименьшее число, делящееся на оба показателя.

Пример

Необходимо найти НОК показателей для следующего выражения:

Показатели равны 3 и 2 . Для этих двух чисел наименьшим общим кратным является число 6 (оно делится без остатка и на 3 , и на 2). Для умножения корней необходим показатель 6 .

Записать каждое выражение с новым показателем:

Найти числа, на которые нужно умножить показатели, чтобы получить НОК.

В выражении 5 3 необходимо умножить 3 на 2 , чтобы получить 6 . А в выражении 2 2 - наоборот, необходимо умножить на 3 , чтобы получить 6 .

Возвести число, которое стоит под знаком корня, в степень равную числу, которое было найдено в предыдущем шаге. Для первого выражения 5 нужно возвести в степень 2 , а втором - 2 в степень 3:

2 → 5 6 = 5 2 6 3 → 2 6 = 2 3 6

Возвести в степень выражения и записать результат под знаком корня:

5 2 6 = (5 × 5) 6 = 25 6 2 3 6 = (2 × 2 × 2) 6 = 8 6

Перемножить числа под корнем:

(8 × 25) 6

Записать результат:

(8 × 25) 6 = 200 6

По возможности необходимо упростить выражение, но в данном случае оно не упрощается.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Операции со степенями и корнями. Степень с отрицательным ,

нулевым и дробным показателем. О выражениях, не имеющих смысла.

Операции со степенями.

1. При умножении степеней с одинаковым основанием их показатели складываются :

a m · a n = a m + n .

2. При делении степеней с одинаковым основанием их показатели вычитаются .

3. Степень произведения двух или нескольких сомножителей равна произведению степеней этих сомножителей.

( abc … ) n = a n · b n · c n

4. Степень отношения (дроби) равна отношению степеней делимого (числителя) и делителя (знаменателя):

( a / b ) n = a n / b n .

5. При возведении степени в степень их показатели перемножаются:

(a m ) n = a m n .

Все вышеприведенные формулы читаются и выполняются в обоих направлениях слева направо и наоборот.

П р и м е р. (2 · 3 · 5 / 15) ² = 2 ² · 3 ² · 5 ² / 15 ² = 900 / 225 = 4 .

Операции с корнями. Во всех нижеприведенных формулах символ означает арифметический корень (подкоренное выражение положительно).

1. Корень из произведения нескольких сомножителей равен произведению корней из этих сомножителей:

2. Корень из отношения равен отношению корней делимого и делителя:

3. При возведении корня в степень достаточно возвести в эту степень подкоренное число:

4. Если увеличить степень корня в m раз и одновременно возвести в m -ую степень подкоренное число, то значение корня не изменится:

5. Если уменьшить степень корня в m раз и одновременно извлечь корень m -ой степени из подкоренного числа, то значение корня не изменится:


Расширение понятия степени. До сих пор мы рассматривали степени только с натуральным показателем; но действия со степенями и корнями могут приводить также к отрицательным , нулевым и дробным показателям. Все эти показатели степеней требуют дополнительного определения.

Степень с отрицательным показателем. Степень некоторого числа с отрицательным (целым) показателем определяется как единица, делённая на степень того же числа с показателем, равным абсолютной велечине отрицательного показателя:

Т еперь формула a m : a n = a m - n может быть использована не только при m , большем, чем n , но и при m , меньшем, чем n .

П р и м е р . a 4 : a 7 = a 4 - 7 = a - 3 .

Если мы хотим, чтобы формула a m : a n = a m - n была справедлива при m = n , нам необходимо определение нулевой степени.

Степень с нулевым показателем. Степень любого ненулевого числа с нулевым показателем равна 1.

П р и м е р ы. 2 0 = 1, (5) 0 = 1, (3 / 5) 0 = 1.

Степень с дробным показателем. Для того, чтобы возвести действительное число а в степень m / n , нужно извлечь корень n –ой степени из m -ой степени этого числа а :

О выражениях, не имеющих смысла. Есть несколько таких выражений. любое число.

В самом деле, если предположить, что это выражение равно некоторому числу x , то согласно определению операции деления имеем: 0 = 0 · x . Но это равенство имеет место при любом числе x , что и требовалось доказать.

Случай 3.


0 0 - любое число.

Действительно,


Р е ш е н и е. Рассмотрим три основных случая:

1) x = 0 это значение не удовлетворяет данному уравнению

(Почему?).

2) при x > 0 получаем: x / x = 1, т.e. 1 = 1, откуда следует,

что x – любое число; но принимая во внимание, что в

Нашем случае x > 0 , ответом является x > 0 ;

3) при x < 0 получаем: – x / x = 1, т. e . –1 = 1, следовательно,

В этом случае нет решения.

Таким образом, x > 0.

Довольно часто при решении задач мы сталкиваемся с большими числами, из которых надо извлечь квадратный корень . Многие ученики решают, что это ошибка, и начинают перерешивать весь пример. Ни в коем случае нельзя так поступать! На то есть две причины:

  1. Корни из больших чисел действительно встречаются в задачах. Особенно в текстовых;
  2. Существует алгоритм, с помощью которого эти корни считаются почти устно.

Этот алгоритм мы сегодня и рассмотрим. Возможно, какие-то вещи покажутся вам непонятными. Но если вы внимательно отнесетесь к этому уроку, то получите мощнейшее оружие против квадратных корней .

Итак, алгоритм:

  1. Ограничить искомый корень сверху и снизу числами, кратными 10. Таким образом, мы сократим диапазон поиска до 10 чисел;
  2. Из этих 10 чисел отсеять те, которые точно не могут быть корнями. В результате останутся 1—2 числа;
  3. Возвести эти 1—2 числа в квадрат. То из них, квадрат которого равен исходному числу, и будет корнем.

Прежде чем применять этот алгоритм работает на практике, давайте посмотрим на каждый отдельный шаг.

Ограничение корней

В первую очередь надо выяснить, между какими числами расположен наш корень. Очень желательно, чтобы числа были кратны десяти:

10 2 = 100;
20 2 = 400;
30 2 = 900;
40 2 = 1600;
...
90 2 = 8100;
100 2 = 10 000.

Получим ряд чисел:

100; 400; 900; 1600; 2500; 3600; 4900; 6400; 8100; 10 000.

Что нам дают эти числа? Все просто: мы получаем границы. Возьмем, например, число 1296. Оно лежит между 900 и 1600. Следовательно, его корень не может быть меньше 30 и больше 40:

[Подпись к рисунку]

То же самое — с любым другим числом, из которого можно найти квадратный корень. Например, 3364:

[Подпись к рисунку]

Таким образом, вместо непонятного числа мы получаем вполне конкретный диапазон, в котором лежит исходный корень. Чтобы еще больше сузить область поиска, переходим ко второму шагу.

Отсев заведомо лишних чисел

Итак, у нас есть 10 чисел — кандидатов на корень. Мы получили их очень быстро, без сложных размышлений и умножений в столбик. Пора двигаться дальше.

Не поверите, но сейчас мы сократим количество чисел-кандидатов до двух — и снова без каких-либо сложных вычислений! Достаточно знать специальное правило. Вот оно:

Последняя цифра квадрата зависит только от последней цифры исходного числа .

Другими словами, достаточно взглянуть на последнюю цифру квадрата — и мы сразу поймем, на что заканчивается исходное число.

Существует всего 10 цифр, которые могут стоять на последнем месте. Попробуем выяснить, во что они превращаются при возведении в квадрат. Взгляните на таблицу:

1 2 3 4 5 6 7 8 9 0
1 4 9 6 5 6 9 4 1 0

Эта таблица — еще один шаг на пути к вычислению корня. Как видите, цифры во второй строке оказались симметричными относительно пятерки. Например:

2 2 = 4;
8 2 = 64 → 4.

Как видите, последняя цифра в обоих случаях одинакова. А это значит, что, например, корень из 3364 обязательно заканчивается на 2 или на 8. С другой стороны, мы помним ограничение из предыдущего пункта. Получаем:

[Подпись к рисунку]

Красные квадраты показывают, что мы пока не знаем этой цифры. Но ведь корень лежит в пределах от 50 до 60, на котором есть только два числа, оканчивающихся на 2 и 8:

[Подпись к рисунку]

Вот и все! Из всех возможных корней мы оставили всего два варианта! И это в самом тяжелом случае, ведь последняя цифра может быть 5 или 0. И тогда останется единственный кандидат в корни!

Финальные вычисления

Итак, у нас осталось 2 числа-кандидата. Как узнать, какое из них является корнем? Ответ очевиден: возвести оба числа в квадрат. То, которое в квадрате даст исходное число, и будет корнем.

Например, для числа 3364 мы нашли два числа-кандидата: 52 и 58. Возведем их в квадрат:

52 2 = (50 +2) 2 = 2500 + 2 · 50 · 2 + 4 = 2704;
58 2 = (60 − 2) 2 = 3600 − 2 · 60 · 2 + 4 = 3364.

Вот и все! Получилось, что корень равен 58! При этом, чтобы упростить вычисления, я воспользовался формулой квадратов суммы и разности. Благодаря чему даже не пришлось умножать числа в столбик! Это еще один уровень оптимизации вычислений, но, разумеется, совершенно не обязательный:)

Примеры вычисления корней

Теория — это, конечно, хорошо. Но давайте проверим ее на практике.

[Подпись к рисунку]

Для начала выясним, между какими числами лежит число 576:

400 < 576 < 900
20 2 < 576 < 30 2

Теперь смотрим на последнюю цифру. Она равна 6. Когда это происходит? Только если корень заканчивается на 4 или 6. Получаем два числа:

Осталось возвести каждое число в квадрат и сравнить с исходным:

24 2 = (20 + 4) 2 = 576

Отлично! Первый же квадрат оказался равен исходному числу. Значит, это и есть корень.

Задача. Вычислите квадратный корень:

[Подпись к рисунку]

900 < 1369 < 1600;
30 2 < 1369 < 40 2;

Смотрим на последнюю цифру:

1369 → 9;
33; 37.

Возводим в квадрат:

33 2 = (30 + 3) 2 = 900 + 2 · 30 · 3 + 9 = 1089 ≠ 1369;
37 2 = (40 − 3) 2 = 1600 − 2 · 40 · 3 + 9 = 1369.

Вот и ответ: 37.

Задача. Вычислите квадратный корень:

[Подпись к рисунку]

Ограничиваем число:

2500 < 2704 < 3600;
50 2 < 2704 < 60 2;

Смотрим на последнюю цифру:

2704 → 4;
52; 58.

Возводим в квадрат:

52 2 = (50 + 2) 2 = 2500 + 2 · 50 · 2 + 4 = 2704;

Получили ответ: 52. Второе число возводить в квадрат уже не потребуется.

Задача. Вычислите квадратный корень:

[Подпись к рисунку]

Ограничиваем число:

3600 < 4225 < 4900;
60 2 < 4225 < 70 2;

Смотрим на последнюю цифру:

4225 → 5;
65.

Как видим, после второго шага остался лишь один вариант: 65. Это и есть искомый корень. Но давайте все-таки возведем его в квадрат и проверим:

65 2 = (60 + 5) 2 = 3600 + 2 · 60 · 5 + 25 = 4225;

Все правильно. Записываем ответ.

Заключение

Увы, не лучше. Давайте разберемся в причинах. Их две:

  • На любом нормальном экзамене по математике, будь то ГИА или ЕГЭ, пользоваться калькуляторами запрещено. И за пронесенный в класс калькулятор могут запросто выгнать с экзамена.
  • Не уподобляйтесь тупым американцам. Которые не то что корни — они два простых числа сложить не могут. А при виде дробей у них вообще начинается истерика.

Преобразование выражений с корнями и степенями часто требует выполнения переходов от корней к степеням и обратно. В этой статье мы разберем, как такие переходы осуществляются, что лежит в их основе, и в каких моментах чаще всего возникают ошибки. Все это снабдим характерными примерами с детальным разбором решений.

Навигация по странице.

Переход от степеней с дробными показателями к корням

Возможность перехода от степени с дробным показателем к корню диктуется самим определением степени. Напомним, как определяется : степенью положительного числа a с дробным показателем m/n , где m – целое, а n – натуральное число, называют корень n-ой степени из a m , то есть, где a>0 , m∈Z , n∈N . Аналогично определяется и дробная степень нуля , с той лишь разницей, что в этом случае m уже считается не целым, а натуральным, чтобы не возникало деления на нуль.

Таким образом, степень всегда можно заменить на корень . Например, от можно перейти к , а степень можно заменить корнем . А вот переходить от выражения к корню не следует, так как степень изначально не имеет смысла (степень отрицательных чисел не определена), несмотря на то, что корень имеет смысл.

Как видите, в переходе от степеней чисел к корням нет абсолютно ничего мудреного. Аналогично осуществляется переход к корням от степеней с дробными показателями, в основании которых находятся произвольные выражения. Заметим, что указанный переход осуществляется на ОДЗ переменных для исходного выражения. К примеру, выражение на всей ОДЗ переменной x для этого выражения можно заменить корнем . А от степени перейти к корню , такая замена имеет место для любого набора переменных x , y и z из ОДЗ для исходного выражения.

Замена корней степенями

Возможна и обратная замена, то есть, замена корней на степени с дробными показателями . В ее основе также лежит равенство , которое в данном случае используется справа налево, то есть, в виде .

Для положительных a указанный переход очевиден. Например, можно заменить степенью , а от корня перейти к степени с дробным показателем вида .

А при отрицательных a равенство не имеет смысла, но корень при этом может иметь смысл. Например, корни и имеют смысл, но заменить их степенями и нельзя. Так можно ли их вообще преобразовать в выражения со степенями? Можно, если провести предварительные преобразования, заключающиеся в переходе к корням с неотрицательными числами под ними, которые потом и заменить степенями с дробными показателями. Покажем, в чем заключаются эти предварительные преобразования и как их провести.

В случае с корнем позволяют выполнить такие преобразования: . А так как 4 – положительное число, то последний корень можно заменить степенью . А во втором случае определение корня нечетной степени из отрицательного числа −a (при этом a – положительное), выражающееся равенством , позволяет корень заменить выражением , в котором кубический корень из двух уже можно заменить степенью, и оно примет вид .

Осталось разобрать, как заменяются корни, под которыми находятся выражения, на степени, содержащие эти выражения в основании. Здесь не стоит спешить с заменой на , буквой A мы обозначили некоторое выражение. Приведем пример, поясняющий, что под этим имеется в виду. Корень так и хочется заменить степенью , основываясь на равенстве . Но такая замена уместна лишь при условии x−3≥0 , а для остальных значений переменной x из ОДЗ (удовлетворяющих условию x−3<0 ) она не подходит, так как формула не имеет смысла для отрицательных a . Если обратить внимание на ОДЗ, то несложно заметить ее сужение при переходе от выражения к выражению , а помните, что мы договорились не прибегать к преобразованиям, сужающим ОДЗ.

Из-за такого неаккуратного применения формулы нередко возникают ошибки при переходе от корней к степеням. Например, в учебнике дано задание, представить выражение в виде степени с рациональным показателем, и приведен ответ , который вызывает вопросы, так как в условии не задано ограничение b>0 . А в учебнике присутствует переход от выражения , скорее всего через следующие преобразования иррационального выражения

к выражению . Последний переход также вызывает вопросы, так как сужает ОДЗ.

Возникает закономерный вопрос: «Как же правильно перейти от корня к степени для всех значений переменных из ОДЗ»? Такая замена проводится на базе следующих утверждений:


Прежде чем обосновать записанные результаты, приведем несколько примеров их использования для перехода от корней к степеням. Для начала вернемся к выражению . Его надо было заменять не на , а на (в данном случае m=2 – целое четное, n=3 – натуральное). Другой пример: .

Теперь обещанное обоснование результатов.

Когда m – целое нечетное, а n – натуральное четное, то для любого набора переменных из ОДЗ для выражения значение выражения A положительно (если m<0 ) или неотрицательно (если m>0 ). Поэтому, .

Переходим ко второму результату. Пусть m – целое положительное нечетное, а n – натуральное нечетное. Для всех значений переменных из ОДЗ, для которых значение выражения A неотрицательно, , а для которых отрицательно,

Аналогично доказывается следующий результат для целых отрицательных и нечетных m и натуральных нечетных n . Для всех значений переменных из ОДЗ, для которых значение выражения A положительно, , а для которых отрицательно,

Наконец, последний результат. Пусть m – целое четное, n – любое натуральное. Для всех значений переменных из ОДЗ, для которых значение выражения A положительно (если m<0 ) или неотрицательно (если m>0 ), . А для которых отрицательно, . Таким образом, если m – целое четное, n – любое натуральное, то для любого набора значений переменных из ОДЗ для выражения его можно заменить на .

Список литературы.

  1. Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.
  2. Алгебра и начала математического анализа. 11 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / [Ю. М. Колягин, М. В. Ткачева, Н. Е. Федорова, М. И. Шабунин]; под ред. А. Б. Жижченко. – М.: Просвещение, 2009.- 336 с.: ил.- ISBN 979-5-09-016551-8.
Статьи по теме