Структурные изменения генов передаваемые по наследству это. Изменение генов станет доступным в домашних условиях Изменение набора генов

С помощью CRISPR прямо сейчас происходит грандиозный прорыв в генной инженерии: ученые планируют скоро научиться избавлять нас навсегда от любых болезней, с перспективой любых контролируемых мутаций и вечной жизни.

На публикацию этого поста нас натолкнуло видео “CRISPR: редактирование генов изменит все и навсегда”, в котором рассказывается о переднем крае науки в части генной модификации человека: речь идет не просто об избавлении от болезней типа СПИД, рак и многие другие, но и о создании безупречного нового вида людей, людей со сверхспособностями и бессмертии. И это происходит прямо сейчас на наших глазах.

Все эти перспективы открываются благодаря недавнему революционному открытию белка CRISPR–Cas9, но обо всем по порядку.

Раньше считалось, что ДНК в каждой нашей клетке – абсолютно идентичны и содержат нашу точную и неизменную копию – какую клетку бы ни взять, но оказалось, что это не так: ДНК в разных клетках немного разные и они меняются в зависимости от разных обстоятельств.

Открытию белка CRISPR – Cas9 помогли наблюдения за выжившими после атаки вирусов бактериями.

Древнейшая война на земле

Бактерии и вирусы соперничают с начала жизни: вирусы-бактериофаги охотятся на бактерии. В океане они убивают 40% от общего числа бактерий каждый день. Вирус делает это, вставляя свой генетический код в бактерию и использует её в качестве фабрики.

Бактерии пытаются безуспешно сопротивляться, но в большинстве случаев их защитные механизмы оказываются слишком слабыми. Но иногда бактерии выживают. Тогда они могут активировать свою самую эффективную противовирусную систему. Они сохраняют часть ДНК вируса в своём генетическом коде, ДНК-архиве “CRISPR”. Здесь она хранится до необходимого момента.

Когда вирус снова атакует, бактерия создает РНК-копию из ДНК архива и
заряжает секретное оружие – белок Cas9. Этот протеин сканирует бактерию на предмет вмешательства вируса, сравнивая каждую часть найденного ДНК с архивом. Когда находится 100% соответствие, он активируется и отрезает ДНК вируса, делая его бесполезным, таким образом защищая бактерию.

Белок Cas9 сканирует ДНК клетки на предмет внедрения вируса и заменяет испорченную часть здоровым фрагментом.

Что характерно, Cas9 очень точен, словно ДНК хирург. Переворот произошел, когда ученые поняли, что система CRISPR программируема – можно просто дать копию ДНК, которую нужно изменить, и поместить систему в живую клетку.

Помимо точности, дешевизны и простоты использования, CRISPR позволяет включать и выключать гены живых клеток и изучать конкретные последовательности ДНК.
Этот метод также работает с любыми клетками, микроорганизмами, растениями, животными или людьми.

Ученые выяснили, что Cas9 можно программировать на любые замены в любой части ДНК – и это открывает практически безграничные возможности для человечества.

Болезням конец?

В 2015-м ученые использовали CRISPR для удаления вируса ВИЧ из клеток пациентов,
и доказали, что это возможно . Годом позже они провели более амбициозный эксперимент с крысами с вирусом ВИЧ в практически всех их клетках.

Учёные просто ввели CRISPR в их хвосты, и смогли удалить более 50% вируса из клеток по всему телу. Возможно, через несколько десятилетий CRISPR поможет избавиться от ВИЧ и других ретровирусов – вирусов, которые прячутся внутри человеческой ДНК, вроде герпеса. Возможно CRISPR сможет победить нашего худшего врага, рак .

Рак является результатом появления клеток, отказывающихся умирать и продолжающих делиться, попутно прячась от иммунной системы. CRISPR дает нам средство редактировать наши иммунные клетки и делать их лучшими охотниками на раковые клетки.

Возможно через некоторое время лечение от рака будет всего лишь парой уколов с несколькими тысячами ваших собственных клеток, созданных в лаборатории, чтобы вылечить вас навсегда.

Возможно через некоторое время вопрос лечения рака – вопрос пары уколов модифицированных клеток.

Первое клиническое испытание такой терапии на пациентах-людях было одобрено в начале 2016-го в США. Менее чем через месяц китайские ученые объявили, что будут лечить пациентов с раком легких иммунными клетками, модифицированными по этой же технологии, в августе 2016 . Дело быстро набирает обороты.

А еще есть генетические заболевания, тысячи их. Они разнятся от слегка раздражающих до крайне смертельных или приносящих годы страданий. С мощными инструментами вроде CRISPR однажды мы сможем покончить с этим.

Более 3000 генетических заболеваний вызываются единственной заменой в ДНК.
Мы уже создаем модифицированную версию Cas9, которая исправляет такие ошибки и избавляет клетку от заболевания. Через пару десятилетий мы может быть сможем навсегда уничтожить тысячи заболеваний. Однако у всех эти медицинских применений один недостаток – они ограничены одним пациентом и умрут вместе с ним, если мы не используем их на репродуктивных клетках или на ранней стадии развития плода.

CRISPR вероятно будет использоваться куда шире. Например для создания модифицированного человека, спроектированного ребенка. Это принесет плавные но необратимые изменения в человеческом генофонде.

Спроектированные дети

Средства изменения ДНК человеческого плода уже существуют,
но технология находится на раннем этапе развития. Однако, ее применяли уже дважды. В 2015-м и 2016-м эксперименты китайских ученых с человеческими эмбрионами достигли частичного успеха на второй попытке.

Они выявили гигантские трудности в редактировании генов эмбрионов, но множество ученых уже работают над решением этих проблем. Это то же самое, что и компьютеры 70-х: в будущем они станут лучше.

Вне зависимости от ваших взглядов на генную инженерию, она коснётся всех. Модифицированные люди могут изменить геном всего нашего вида, потому что их привитые качества будут переданы их детям, и через поколения медленно распространятся, медленно меняя генофонд человечества. Это начнется постепенно.

Первые спроектированные дети не будут сильно отличаться от нас. Скорее всего, их гены будут изменены для избавления от смертельных наследственных заболеваний.
По мере развития технологий все больше людей начнут думать, что неиспользование генетической модификации неэтично, потому что это обрекает детей
на страдание и смерть, которые можно предотвратить.

Как только первый такой ребенок родится, откроется дверь, которую уже не удастся закрыть. Сначала некоторые черты никто не будет трогать, но по мере роста одобрения технологии и наших знаний о генетическом коде, будет расти будет и соблазн.
Если вы сделаете свое потомство иммунным к болезни Альцгеймера, почему бы вдобавок не дать им улучшенный метаболизм? Почему бы до кучи не наградить их отличным зрением? Как насчет роста или мускул? Пышных волос? Как насчет дара исключительного интеллекта для вашего ребенка?

Огромные перемены придут как результат накопления личных решений миллионов людей.
Это скользкий склон, и модифицированные люди могут стать новой нормой. Пока генная инженерия становится все более привычной, а наши знания улучшаются, мы можем подойти к искоренению главной причины смертности – старения.

2/3 из примерно 150 000 человек, умерших сегодня, умерли по причинам, связанным со старением.

Сегодня считается, что старение вызывается накоплением повреждений в наших клетках
вроде разрывов ДНК или износа систем, ответственных за исправление этих повреждений.
Но есть также и гены, которые напрямую влияют на наше старение.

Генная инженерия и прочая терапия могли бы остановить или замедлить старение. Возможно даже обратить его вспять.

Типичная реакция на возможность вечной жизни (как и любой другой привычной сейчас, но революционной несколько сотен лет назад технологии).

Вечная жизнь и “люди икс”

Мы знаем, что в природе есть животные, которые не стареют. Может, мы могли бы занять у них пару генов. Некоторые ученые считают что однажды старение будет искоренено. Мы все равно будем умирать, но только не в больнице в 90 лет, а через пару тысяч лет, прожитых в окружении наших любимых.

Вызов огромен и, возможно, цель недостижима, но можно допустить, что люди, живущие сегодня, могут оказаться первыми, кто вкусит плоды анти-возрастной терапии. Возможно, нужно всего лишь убедить смышленого миллиардера в необходимости помочь решить эту большую проблему.

Если смотреть на это шире, мы могли бы решить множество задач с помощью специально измененных людей, например которые могли бы лучше справляться с высококалорийной едой, и избавиться от таких недугов цивилизации как ожирение.

Владея модифицированной иммунной системой с перечнем потенциальных угроз,
мы могли бы стать неуязвимыми для большинства заболеваний, преследующих нас сегодня. Ещё позже мы смогли бы создать людей для длительных космических перелетов и для адаптации к различным условиям на других планетах, что было бы крайне полезно для поддержания нашей жизни во враждебной вселенной.

Несколько щепоток соли

Есть несколько главных препятствий, технологических и этических. Многие почувствуют страх перед миром, где мы отсеиваем несовершенных людей, а потомство выбираем на основе того, что считается здоровым.

Но мы уже живем в таком мире. Тесты на десятки генетических заболеваний или осложнений стали нормой для беременных женщин во многих странах. Часто одно подозрение на генетический дефект может привести к прерыванию беременности.
Возьмем для примера синдром Дауна, один из самых распространенных генетических дефектов: в Европе около 90% беременностей с установленным наличием этого отклонения прерываются.

Генетический отбор в действии: уже сейчас синдром Дауна диагностируется на ранней стадии развития эмбриона и 90% беременности с этим диагнозом прерывается.

Решение о прерывании беременности является очень личным, но важно понимать, что мы уже сегодня отбираем людей, основываясь на состоянии здоровья. Нет смысла притворяться, что это изменится, поэтому нам необходимо действовать осторожно и этично, несмотря на растущую свободу выбора благодаря дальнейшему развитию технологий.

Однако, все это перспективы отдаленного будущего. Несмотря на мощность CRISPR, метод не лишен недостатков. Могут случиться ошибки при редактировании, неизвестные ошибки могут произойти в любой части ДНК и остаться незамеченными.

Изменение гена может достичь нужного результата и вылечить от заболевания, но вместе с этим спровоцировать нежелательные изменения. Мы попросту недостаточно знаем о сложных взаимосвязях наших генов, чтобы избежать непредсказуемых последствий.

Работа над точностью и методами наблюдения очень важна в предстоящих клинических испытаниях. И раз уж мы обсудили возможное светлое будущее, также стоит упомянуть и более мрачное видение. Представьте, что может страна вроде Северной Кореи сделать с таким уровнем технологий?

Важно, чтобы технология генной модификации не попала в руки тоталитарным режимам, которые гипотетически могут использовать ее во вред человечеству – например, создать армию генетически модифицированных солдат.

Может она навечно продлить свое правление с помощью принудительной инженерии? Что остановит тоталитарный режим от создания армии модифицированных суперсолдат?

Ведь это в теории возможно. Сценарии вроде этого лежат в далеком будущем, если они вообще возможны, но подтверждение работоспособности концепции такой инженерии уже существует. Технология и правда настолько могущественна.

Подобное может стать поводом для запрета инженерии и связанных с ней исследований, но это определенно было бы ошибкой. Запрет на генную инженерию человека только приведёт науку в области с такими правилами и законами, с которыми нам было бы не по себе. Только участвуя в процессе, мы сможем быть уверены, что исследование ведется с осторожностью, разумом, контролем и прозрачностью.

Мы можем исследовать и внедрять в человека любые генные модификации.

Заключение

Чувствуете беспокойство? Почти в каждом из нас есть какое-то несовершенство. Позволили бы нам существовать в подобном новом мире? Технология несколько устрашает, но нам есть что выиграть, да и генная инженерия может быть очередной ступенью в эволюции разумных видов жизни.

Возможно мы покончим с болезнями, увеличим продолжительность жизни на века и отправимся к звездам. Не стоит мелко мыслить, говоря о такой теме. Каким бы ни было ваше мнение о генной инженерии, будущее наступает несмотря ни на что.

То, что раньше было научной фантастикой, вскоре станет нашей новой реальностью.
Реальностью, полной возможностей и препятствий.

Вы можете также посмотреть непосредственно само видео:

Изменчивость представляет собой результат реакции генотипа в процессе индивидуального развития организма (онтогенеза) на условия внешней среды.

Изменчивость является одним из главных факторов эволюции. Она служит источником естественного и искусственного отбора.

Различают наследственную и ненаследственную изменчивость. К наследственной изменчивости относятся такие изменения признаков, которые определяются генотипом и сохраняются в ряду поколений. Наследственная изменчивость возникает в результате мутаций (мутационная изменчивость) или в результате рекомбинации генетического материала двух особей, например, родителей (комбинативная изменчивость).

Комбинативная изменчивость представляет собой результат перекомбинации генов и перекомбинации хромосом, несущих различные аллели, и выражается в появлении разнообразия организмов – потомков, получивших новые комбинации генов, уже существовавших у родительских форм.

У эукариотических организмов комбинативная изменчивость возникает за счет перекомбинации генетического материала родителей при половом размножении. Рекомбинация генов осуществляется различными способами. Этот процесс может быть связан с перераспределением целых хромосом. Такой механизм в соответствии с третьим законом Менделя обеспечивает независимое наследование несцепленных генов и признаков. Чаще всего рекомбинацию в узком смысле слова связывают с кроссинговером, то есть с перекомбинацией генов, локализованных в гомологичных хромосомах.

У бактерий найдено три механизма объединения и рекомбинации генетического материала: трансформация, конъюгация и трансдукция .

К ненаследственной изменчивости относят изменения признаков организма, не сохраняющиеся при половом размножении. Это так называемая модификационная изменчивость - свойство организмов менять свой фенотип в зависимости от условий среды при сохранении стабильности генотипа. Модификационные изменения имеют массовый приспособительный характер и исчезают при изменении условий. Они не представляют интереса для эволюции, поскольку не наследуются. Пределы, в рамках которых организм способен реагировать на условия окружающей среды, называются нормой реакции . Широкая норма реакции обеспечивает хорошую адаптационную способность организма. Норма реакции определяется генотипом особи.

Эпигенетическая изменчивость связана с изменением экспрессии генов без изменения их структуры. Набор работающих генов меняется в процессе индивидуального развития и в ответ на внешние воздействия. Эти изменения могут быть как ненаследуемыми, так и сохраняться на протяжении нескольких поколений.

Мутационная изменчивость.


Термин «мутация» был предложен в начале XX века Г. Де Фризом. В результате многолетних исследований растения энотеры он обнаружил ряд форм, которые отличались от основной массы, причем эти отличия сохранялись из года в год. Обобщив свои наблюдения, Де Фриз сформулировал мутационную теорию: «мутация – это явление скачкообразного, прерывистого изменения наследственного признака».

Основные положения мутационной теории.

  1. Мутации возникают внезапно как дискретные изменения признаков.
  2. Новые формы устойчивы.
  3. В отличие от модификаций мутации не образуют непрерывных рядов, не группируются вокруг какого-либо среднего типа. Они представляют собой качественные изменения.
  4. Мутации проявляются по-разному и могут быть как полезными, так и вредными.
  5. Вероятность обнаружения мутаций зависит от числа исследованных особей.
  6. Сходные мутации могут возникать неоднократно.

В дальнейшем все положения этой теории, кроме пункта 3, подтвердились.

В современном понимании мутации это наследуемые изменения генетического материала.

Существует несколько типов классификации мутаций

  1. По характеру изменения генома: геномные, хромосомные, генные.
  2. По проявлению в гетерозиготе: доминантные рецессивные.
  3. По уклонению от нормы (дикого типа): прямые, обратные.
  4. В зависимости от причин, вызвавших мутацию: спонтанные, индуцированные.
  5. По локализации в клетке: ядерные, митохондриальные, хлоропластные.
  6. По отношению к возможности наследования: генеративные, соматические.

К геномным мутациям относят изменения числа хромосом. Минимальный набор хромосом, когда каждая хромосома представлена одной копией, называется гаплоидным . Гаплоидными являются гаметы. Гаплоидный набор хромосом обозначается буквой n. В соматических клетках обычно присутствует диплоидный набор хромосом, содержащий двойной по сравнению с гаплоидным набор хромосом (2 n). В жизненных циклах эукариот встречаются случаи сверхнормального умножения числа хромосом. Если такие изменения пропорциональны (кратны) гаплоидному набору, то говорят о полиплоидизации . Если изменяется число экземпляров только одной или нескольких хромосом набора, то говорят об анеуплоидии .

Полиплоидия широко и неравномерно распределена в природе. Известны полиплоидные грибы и водоосли, часто встречаются полиплоиды среди цветковых растений. Макронуклеусы инфузорий в высокой степени полиплоидны (более 100 n).

Автополиплоидия – повторение в клетке одного и того же хромосомного набора. Один из путей возникновения полиплоидов - образование нередуцированных гамет. Удвоение числа хромосом может быть результатом эндоредупликации генетического материала: клетки, находившиеся в исходном растении в G2 фазе, вместо митоза повторно вступают в S фазу. Затем такие клетки с удвоенным числом хромосом делятся и дают начало полиплоидным клонам. Другой причиной появления полиплоидных клеток является эндомитоз – процесс нерасхождения хромосом в анафазе из-за нарушения функции веретена деления. Для искусственного получения полиплоидов применяют агенты, блокирующие расхождение удвоившихся хромосом, например, колхицин, вырабатываемый растением безвременником, винбластин, получаемый из другого растения – барвинка, камфора.

Аллополиплоиды – организмы, содержащие наборы хромосом двух или нескольких видов, полученные в результате гибридизации и полиплоидизации. Природными аллополиплоидами являются некоторые виды растений, например, геном мягкой пшеницы включает два генома родственных диплоидных пшениц и геном эгилопса. Примером искусственного аллополиплоида является гибрид редьки и капусты, полученный в 1927 г. Г.Д.Карпеченко.

Полиплоидия часто ведет к появлению более мощных и продуктивных организмов. Однако фертильность полиплоидов понижена из-за неправильной конъюгации хромосом в мейозе и неравномерного расхождения хромосом по гаметам, триплоиды не дают потомства

Хромосомные мутации связаны с перестройками хромосом – аберрациями . Выделяют аберрации внутрихромосомные (вовлечены участки одной хромосомы) и межхромосомные (вовлечены участки разных негомологичных хромосом).

Внутрихромосомные перестройки :

Дефишенси – концевые нехватки;

Делеции – выпадение частей хромосомы, не затрагивающее теломеру;

Дупликации – удвоение (умножение) части хромосомы;

Инверсии – изменения чередования генов в хромосоме в результате поворота участка хромосомы на 180 градусов.

Межхромосомные перестройки - транслокации – перемещения части одной хромосомы на другую, не гомологичную ей.

Особое положение занимают транспозиции, или инсерции – изменения локализации небольших участков генетического материала, включающих один или несколько генов. Транспозиции могут происходить как в пределах одной хромосомы, так и между хромосомами. Поэтому транспозиции занимают промежуточное положение между внутрихромосомными и межхромосомными перестройками.

Генные (точковые) мутации это изменения последовательности нуклеотидов в ДНК. Точковые мутации подразделяются на следующие группы:

а) транзиции – замена пурина на пурин; пиримидина на пиримидин;

б) трансверсии – замена пиридина на пурин и обратно;

в) вставка лишней пары нуклеотидов;

г) выпадение пары нуклеотидов.

Основная причина возникновения мутаций – «ошибки трех Р»: репликации, репарации и рекомбинации. Такие ошибки происходят при нарушении регуляции этих трех процессов. Показана положительная корреляция между частотой мутаций и дефектами ДНК полимераз и других ферментов репликации и репарации.

Основания ДНК могут существовать в нескольких таутомерных формах. Если аденин находится в обычной аминной форме, он спаривается с тимином. Будучи в редкой иминной форме, аденин образует пары с цитозином. Этот таутомерный переход аденина при последующей репликации может привести к транзиции АТ-ГЦ. Редкий енольный таутомер тимина способен образовывать пару с гуанином, а это также приведет к замене пары нуклеотидов. Все транзиции и трансверсии можно объяснить некоторой неоднозначностью соответствия между нуклеотидами в комплементарных цепях ДНК.

Частота спонтанных, то есть возникших без воздействия внешних факторов мутаций варьирует от 10 -4 до 10 -10 . Например, мутации устойчивости к стрептомицину у кишечной палочки наблюдаются с частотой 4 . 10 -10 , а появление белых глаз у дрозофилы – 4 . 10 -5 . У различных микроорганизмов – бактерий, бактериофагов, грибов – общая частота спонтанного мутирования в пересчете на репликацию генома приблизительно одинакова – около 1%. Одновременно может мутировать несколько (много) генов.

В 1925-1927 гг. было открыто мутагенное действие рентгеновских лучей. В 30-е годы ХХ века обнаружили мутагенный эффект ряда химических веществ. К физическим мутагенам относятся кроме рентгеновского ультрафиолетовое и гамма- излучение, быстрые нейтроны. Химические мутагены очень разнообразны по химической структуре и механизму действия. Например, азотистая кислота вызывает дезаминирование оснований нуклеиновых кислот, а алкилирующие супермутагены – присоединение к ним метильной или этильной групп. Это приводит к неправильному спариванию. Акридиновые соединения способствуют появлению вставок нуклеотидов.

В геномах многих организмов обнаружены особо подвижные мигрирующие генетические элементы. Впервые их обнаружила американская исследовательница Б.Мак Клинток в 1940 г. Изучая мутацию окраски зерновок у кукурузы, она нашла нестабильную мутацию, которая ревертировала к дикому типу с повышенной частотой. Нестабильные мутации часто сопровождались хромосомными нарушениями. Гены, вызывающие разрывы хромосом, были названы мобильными элементами , поскольку могли перемещаться с одного участка хромосомы на другой. Эти элементы характеризуются следующими свойствами:

  1. они могут перемещаться из одного сайта в другой;
  2. их встраивание в данный район влияет на активность генов, расположенных рядом;
  3. утрата МЭ в данном локусе превращает прежде мутабильный локус в стабильный;
  4. в сайтах, в которых присутствуют МЭ, могут возникать хромосомные аберрации и разрывы хромосом.

Геном кукурузы содержит несколько семейств мобильных элементов. Члены каждого семейства могут быть подразделены на два класса:

Автономные элементы, которые способны вырезаться и транспозироваться. Их внедрение ведет к появлению нестабильных аллелей.

Неавтономные элементы, которые могут быть активированы к танспозициям только определенными автономными элементами (членами того же семейства).

У кукурузы лучше всего изучены семейства Ac-Ds (активатор-диссоциатор), Spm (супрессор-мутатор) и Dt. Ac-элемент имеет длину 4563 пн, на концах у него инвертированные повторы. Он кодирует фермент транспозазу, обеспечивающий перемещение Ac и Ds. Элементы Ds возникают в результате делеций внутренних участков гена Ac.

В настоящее время мобильные элементы открыты у множества видов растений, животных и микроорганизмов. У E.coli были найдены IS-элементы (insertion sequences – вставные последовательности). Они характеризуются следующими характерными особенностями:

1) на концах IS-элементы несут инвертированные (повернутые на 180 градусов относительно друг друга) повторы от нескольких пар до нескольких десятков пар нуклеотидов.

2) большинство IS-элементов содержит ген транспозазы, контролирующий синтез фермента, ответственного за их перемещение.

3) в точке внедрения каждого IS-элемента, на его флангах всегда обнаруживается дупликация в прямой ориентации длиной 4-9 пар нуклеотидов.

Обычно хромосома E.coli содержит несколько IS-элементов.

В дальнейшем у бактерий были обнаружены более сложные МЭ – транспозоны, которые отличаются от IS-элементов тем, что в них включены некоторые гены, не имеющие отношения к самому процессу транспозиции, например, гена устойчивости к антибиотикам, тяжелым металлам и другим ингибиторам. Транспозоны обычно фланкированы длинными прямыми или инвертированными повторами, в роли которых часто выступают IS-элементы.

Сходно устроены и МЭ эукариот, например, Ty 1 дрожжей, множественные диспергированные гены дрозофилы.

По механизмам транспозиции МЭ делятся на два класса. Элементы первого класса перемещаются, используя обратную транскриптазу, то есть на РНК-матрице мобильного элемента синтезируется ДНК. Обратная транскриптаза (ревертаза) не только ведет синтез нити ДНК на РНК, но и осуществляет синтез второй комплементарной нити ДНК, а ЗНК матрица распадается и удаляется. Двунитевая ДНК синтезируется в цитоплазме, а затем перемещается в ядро и может встроиться в геном. Такие мобильные элементы называются ретротранспозонами. Ретротранпозоны составляют более 2% генома у дрозофилы и до 40% у растений. Элементы второго класса перемещаются непосредственно как ДНКовые элементы и называются транспозонами. Все они имеют короткие инвертированные повторы на концах.

Функциональное значение мобильных элементов.

1. Перемещения и внедрение МЭ в гены может вызвать мутации. Около 80% спонтанных мутаций в разных локусах дрозофилы вызвано инсерциями МЭ. Внедряясь в ген, МЭ может повредить экзон, разорвав его. В таком случае ген перестанет кодировать белок. Попадая в район протоморов или энхансеров, мобильный элемент может повредить регуляторную зону гена, изменить его экспрессию. Инсерция в район интрона может оказаться безвредной.

2. Может измениться состояние активности гена. Длинные концевые повторы ретротранспозонов и сами ретротранспозоны содержат нуклеотидные последовательности, являющиеся энхансерами транскрипции. Поэтому перемещение этих сигналов в геноме может изменить регуляцию активности генов.

3. В результате кроссинговера между одинаково ориентированными элементами возникает дупликация и делеция материала, расположенного между инсерциями. Если МЭ ориентированы в противоположных направлениях, возникает инверсия.

В последние десятилетия произошел огромный прогресс в изучении эпигенетической изменчивости , под которой понимают разнообразные наследуемые, хотя, возможно, и обратимые изменения экспрессии генов, не связанные с нарушением структуры генетического материала. Сейчас очевидно, что эпигенетические факторы играют значительную роль в онтогенетической дифференцировке, и нарушение этой системы ассоциировано со многими патологическими состояниями. Регуляция работы многих генов осуществляется путем ДНК-белковых взаимодействий. Это относится, в частности, к контролю экспрессии генов транскрипционными факторами, обратной регуляции работы гена его продуктом или продуктами других генов при достижении ими определенных концентраций. Если под влиянием каких-то внешних воздействий произойдут изменения в подобных белках-регуляторах, их последствия будут выражаться в виде нарушения экспрессии определенных генов.

Эпигенетические изменения могут наследоваться не только на клеточном уровне, но и на уровне целого организма. На экспрессию генов влияет характер гетерохроматинизации хромосом, который зависит не только от эндогенных, но и от экзогенных факторов. Это феномен впервые был изучен А. А. Прокофьевой-Бельговской, которая в материалах своей докторской диссертации убедительно показала, что «развитие признака в организме не определяется только наличием на участке хромосомы определенного гена, а контролируется еще состоянием данного участка, обнаруживаемого на микроскопическом уровне, то есть находится ли этот участок хромосомы в интерфазе в деконденсированном состоянии или он конденсирован». Активность многих белков определяется их посттрансляционными модификациями – фосфорилированием, ацетилированием, метилированием. В частности, подобные модификации, касающиеся гистоновых белков или белков, участвующих в регуляции работы генов, могут существенно влиять на их транскрипцию. Важную роль в регуляции экспрессии генов играют пространственные взаимоотношения между генами и соответствующими регуляторными комплексами. Все эти особенности работы генов определяют хорошо известное генетикам явление, получившее название «эффект положения » - то есть разный характер фенотипического проявления гена в зависимости от его локализации в специфических районах генома. Список явлений, которые могут быть объяснены с позиций эпигенетической изменчивости, может быть продолжен.

Одним из наиболее хорошо изученных эпигенетических механизмов является метилирование ДНК , проходящее, чаще всего, по 5-му углероду цитозина. Эта модификация ДНК играет значительную роль в регуляции экспрессии генов эукариот. 5’-нетранслируемые области генов содержат последовательности, обогащенные CpG-парами, так называемые CpG-островки. Во многих случаях инактивация гена достигается за счет метилирования этих последовательностей, причем такое состояние может стабильно поддерживаться в течение многих поколений клеток. Метильные группы нарушают взаимодействия между ДНК и белками, препятствуя тем самым связыванию транскрипционных факторов. Кроме того, метилированные районы ДНК могут взаимодействовать с репрессорами транскрипции.

Изменение ДНК человека которое передается будущим поколениям уже давно считается этически закрытым и запрещенным во многих странах. Ученые сообщают, что они используют новые инструменты для ремонта болезнетворных генов в эмбрионах человека. Хотя исследователи используют дефектные эмбрионы и не собираются имплантировать их в матку женщины, работа вызывает опасение.

Изменение ДНК человеческих яйцеклеток, спермы или эмбрионов известно как герминативное изменение. Многие ученые призывают к мораторию на пересмотр клинических эмбрионов, редактирование зародышевой линии человека и многие считают, что этот вид научной деятельности должен быть запрещен.

Однако, редактирование ДНК человеческого эмбриона может быть этически допустимо, чтобы предотвратить болезнь у ребенка, но только в редких случаях и с гарантиями. Эти ситуации могут быть ограниченно введены для пар, когда они оба имеют серьезные генетические заболевания и для кого редактирование эмбриона действительно последний разумный вариант, если они хотят иметь здорового ребенка.

Опасность преднамеренного изменения генов

Ученые считают, что редактирование эмбриона человека может быть приемлемым, чтобы предотвратить ребенка от наследования серьезных генетических заболеваний, но только при соблюдении определенной техники безопасности и этических критериев. Например, пара не может иметь “разумные альтернативы”, такие как возможность выбора здоровых эмбрионов для экстракорпорального оплодотворения (ЭКО) или с помощью пренатальных тестов и аборта плода с болезнью. Другая ситуация, которая может удовлетворить критериям, если оба родителя имеют одинаковые заболевания, такие как, например, кистозный фиброз.

Ученые предупреждают о необходимости строгого государственного надзора, чтобы предотвратить использование редактирования зародышевой линии для других целей, например, чтобы дать ребенку желаемые, отличительные от остальных черты.

Редактирование генов в клетках пациентов, которые не наследуются, клинические испытания уже ведутся для борьбы с ВИЧ, гемофилией и лейкозом. Считается, что существующие регуляторные системы для генной терапии которые являются достаточными для проведения таких работ.

Редактирование генома не должно быть для повышения потенции, повышения у здорового человека мышечной силы или снижения уровня холестерина.

Редактирование генов человеческой зародышевой линии или модификация зародышевой линии человека означает преднамеренное изменение генов передающееся детям и будущим поколениям.

Другими словами, создание генно-модифицированных людей . Модификация зародышевой линии человека на протяжении многих лет считается запретной темой в связи с безопасностью и социальными причинами. Это формально запрещено в более чем 40 странах.

Опыты по созданию генно-модифицированных людей и наука евгеника

Однако, в последние годы, по новым методам генной инженерии, проводились опыты с человеческими эмбрионами. Для исследований использовались гены и человеческие эмбрионы связанные с бета-заболеванием крови – талассемией. Эксперименты были в основном безуспешными. Но инструменты редактирования генов совершенствуются в лабораториях по всему миру и ожидается, что они позволят легче, дешевле и более точнее редактировать или удалять гены, чем когда-либо прежде. Современные пока теоретические способы редактирования генома позволят ученым вставлять, удалять и подправлять ДНК с получением положительных результатов. Это открывает перспективу лечения некоторых заболеваний, таких как серповидно-клеточные заболевания, муковисцидоз и определенные виды рака.

Селекция применительно к человеку – евгеника

Редактирование генов человеческих эмбрионов или направление евгеника приводит к созданию генетически модифицированных очень разных людей. Это вызывает серьезную безопасность в связи с социальными и этическими проблемами. Они варьируются от перспективы необратимого вреда для здоровья будущих детей и поколений до открывания дверей к новым формам социального неравенства, дискриминации и конфликтов и новой эре евгеники.

Наука евгеника по селекции человека попала в середине прошлого века как наука нацистского направления.

Ученым не разрешено вносить изменения в ДНК человека, который передается последующим поколениям. Такой новаторский шаг науки евгеники следует рассматривать лишь после дополнительных исследований, после чего изменения могут быть проведены в условиях жестких ограничений. Такие работы должны быть запрещены, чтобы предотвратить серьезные заболевания и инвалидности.

Изменчивость вызванную изменением генов называют ещё мутациями.

Это давнее табу на внесение изменений в гены человеческой спермы, яйцеклеток или эмбрионов, потому что такие изменения будут унаследованы будущими поколениями. Это табу отчасти из-за опасений, что ошибки могут непреднамеренно создать новые искусственные болезни, которые потом могут стать постоянной частью человеческого генофонда.

Другая проблема заключается в том, что этот вид может быть использован для генетической модификации для немедицинских причин. Например, ученые теоретически могут попытаться создать конструктор детей, в которых родители пытаются выбрать черты характера своих детей, чтобы сделать их умнее, выше, лучшими спортсменами или с другими якобы необходимыми атрибутами.

Ничего подобного в настоящее время не возможно. Но даже перспектива вызывает опасения ученых существенно изменить ход эволюции и создания людей, которые считаются генетически улучшенными, придумывать какие антиутопии будущего, описанные в фильмах и книгах.

Любая попытка создания младенцев от спермы, яйцеклеток или эмбрионов, которые имеют свои ДНК и пытаться редактировать можно только при очень тщательно контролируемых условиях и только для предотвращения разрушительного заболевания.

Это может быть сложно в дальнейшем провести грань между использованием генного редактирования, чтобы предотвратить или обработать заболевание и использовать его для повышения возможностей человека.

Например, если ученым удается выяснить, что изменения генов повышают мыслительные способности, чтобы отбиваться от деменции при болезни Альцгеймера, то это можно считать профилактической медициной. Если просто кардинально улучшить память здорового человека, то это уже не медицинское направление.

Когда разрешено изменять ДНК

Возможность редактирования генов и может быть использована для лечения многих заболеваний и, возможно, даже предотвратить многие разрушительные расстройства от происходящих в первую очередь путем редактирования из генетических мутаций в сперме, яйцеклетке и эмбрионе. Некоторые потенциальные изменения могли бы предотвратить широкий спектр заболеваний, включая рак молочной железы, болезнь Тея-Сакса, серповидноклеточную анемию, кистозный фиброз и болезнь Хантингтона.

Клинические испытания редактирования генов должны быть разрешены, если:

  • нет “разумной альтернативы”, чтобы не допустить “серьезного заболевания”
  • убедительно доказано, что гены, будучи отредактированы устраняют причину заболевания
  • изменения направлены лишь на преобразование таких генов которые связаны с обычным состоянием здоровья
  • проведена достаточная предварительная исследовательская работа на тему рисков и потенциальных выгод для здоровья
  • постоянный, строгий надзор для изучения влияния процедуры на здоровье и безопасность участников, а также долгосрочные комплексные планы
  • есть максимальная прозрачность в соответствии с конфиденциальностью пациента и ведется переоценка, здоровья, социальные выгоды и риски
  • есть надежные надзорные механизмы, чтобы предотвратить расширение серьезной болезни или состояния.

Сторонники редактирования зародышевой линии человека, утверждают, что это могло бы потенциально уменьшить или даже устранить, возникновение многих серьезных генетических заболеваний уменьшили бы человеческие страдания во всем мире. Оппоненты говорят, что изменения человеческих эмбрионов опасно и противоестественно, и не учитывает согласие будущих поколений.

Дискуссия по изменению зародыша человека

Начнем с возражением о том, что изменение зародыша – это противоестественно или играть против Бога.

Этот аргумент основывается на предпосылке, что естественное по своей сути хорошее.

Но болезни являются естественными и люди миллионами заболевают и умирают преждевременно-все совершенно естественно. Если бы мы только охраняли природные существа и природные явления, мы бы не смогли использовать антибиотики, чтобы убить бактерии или иначе занимались бы медициной или боролись с засухой, голодом, мором. Система здравоохранения ведется в каждой развитой стране и может быть справедливо охарактеризована как часть всеобъемлющей попытки сорвать ход природы. Что естественно не является ни хорошим, ни плохим. Природные вещества или естественные методы лечения лучше, если они, конечно, возможны.

Приводит к важному моменту в истории медицины и редактирование генома и представляет перспективные начинания науки на благо всего человечества.

Вмешательство в геном человека допущено только в профилактических, диагностических или терапевтических целях и без внесения модификаций для потомков.

Стремительный прогресс в области генетики так называемый “дизайнер младенцев” увеличивает необходимость биоэтики для широкой общественной и ведении дискуссии о силе науки. Наука способна генетически модифицировать человеческие эмбрионы в лаборатории, чтобы контролировать унаследованные черты, такие как внешний вид и интеллект.

По состоянию на сейчас многие страны подписали международную Конвенцию, запрещающую этот вид редактирования генов и изменение ДНК.

Два года назад была изобретена технология изменения генома CRISPR/Cas9. В 2015 году она сделала настоящий переворот в генной инженерии. В основе технологии лежит молекулярный защитный механизм микроорганизмов, благодаря которому можно с повышенной точностью редактировать фрагменты ДНК и вырезать их. Причем делать это можно непосредственно в живых клетках любого организма!

Конечно, сегодня манипуляциями с генами никого не удивишь, однако работа с ними до этого выполнялась в специально оборудованных лабораториях при крупнейших институтах. Но технгология CRISPR/Cas9 может стать доступной каждому. Молекулярный биолог НАСА Джосиа Зайнер намерен разработать набор, который бы позволял проводить эксперименты с изменением генов в домашних условиях. Он позволит у себя на кухне изменять геном дрожжей и микроорганизмов.

Принцип действия технологии

Аббревиатуру CRISPR на русский язык дословно можно перевести как «кластерные регулярно разделяемые короткие палиндромические повторы», в первый раз они были найдены в генах архей и бактерий. Потом было обнаружено, что микроорганизмы, которым удалось пережить нападение вируса, прописывают в собственную ДНК участок гена недоброжелателя. Благодаря этому, сформированные организмом клетки смогут распознать подобный штамм. Если в «базе данных» генов имеются сведения врага, то при встрече с ним микроорганизмы используют специальный молекулярный механизм. Он присоединяется к ДНК вируса в том месте, которое соответствует сохраненному участку. Далее белки группы Cas применяются для разрезания ее и уничтожения вируса. Ученые определили, что подобные ножницы для разрезания молекул можно использовать для любого участка генетического кода млекопитающих, и человек не является исключением. С их помощью можно заменять либо, редактировать различные гены.

Интернет-магазин The ODIN начнет продавать наборы для редактирования генного кода

По мнению господина Зайнера, CRISPR/Cas9 должен стать общедоступным, возможность проводить эксперименты с этим методом должны получить даже начинающие исследователи и любители. С этой целью был разработан интернет-магазин The ODIN. Его цель – помочь в проведении домашних экспериментов с искусственно созданными бактериями. Сегодня компания Зайнера привлекает средства на краудфандинговой площадке Indiegogo, предлагая в качестве «вознаграждения» полноценные наборы и реактивы для редактирования генов.

Доступные наборы

Продаваемая продукция похожа на развивающие наборы для проведения химических опытов школьниками и студентами. За 75 долларов США здесь можно купить комплект, позволяющий добавлять в геном бактерий флуоресцентный белок, в результате чего они начинают светиться в темноте. Для создания генно модифицированного штамма бактерий, который бы смог выжить в экстремальных условиях, необходимо купить комплект за 130 долларов США. А вот набор за 160 американских долларов позволит вносить изменения в генный код дрожжей, добавляя в них красный пигмент.

Компания предлагает и более дорогостоящие наборы. Так, например, за 200 долларов можно получить комплект, который наделяет бактерии способностями удобрять почву и разрушать пластик. За 500 долларов можно купить набор для классной комнаты – клиент может указать вид комплектов, которые будут высланы в количестве 20 штук для группового использования. Инструменты из этого набора могут наделять бактерии свойством светиться в темноте или изменять цвет.

Комплект за 3000 долларов позволит создать настоящую домашнюю лабораторию для проведения опытов по молекулярной и синтетической биологии. В него входят: центрифуги, пипетки, реагенты, гель электрофореза, химические вещества и многое другое. Набор комплектуется позволяет использовать систему CRISPR для проведения различных исследований.

Самым невероятным является предложение за 5000$: авторы проекта обещают возможность создать новый уникальный живой организм. С его помощью можно выделять нужный признак дрожжей или бактерий и изменять его. Владелец такого комплекта может самостоятельно выводить генетически модифицированные организмы. Компания помогает определить параметры, которые содействуют достижению поставленных целей! Детальная инструкция, прилагающаяся к каждому набору, поможет проводить эксперименты без посторонней помощи, хотя автора с готовностью обещают провести консультацию в случае необходимости.

Планы на будущее

Технология CRISPR способна проводить изменения с генами человека. Однако Зайнер не планирует реализовывать наборы, которые бы помогали бороться с облысением либо наращивать дополнительную почку.

Чтобы добиться своей цели, на сайте Indiegogo Зайнером была начата краудфандинговая кампания. Посмотреть компанию можно . Благодаря нарастающему интересу к методу CRISPR, авторам компании удалось раньше установленного срока получить 10 000 долларов США, необходимые для создания портативных наборов. По мнению экспертов Инвестток.ру, до конца компании авторы проекта могут собрать в десять раз больше средств, чем планировали изначально, поскольку интерес аудитории к новой технологии огромен.

Данная брошюра содержит информацию о том, что такое хромосомные нарушения, как они могут наследоваться, и какие проблемы могут быть с ними связаны. Данная брошюра не может заменить Ваше общение с врачом, однако она может помочь Вам при обсуждении интересующих Вас вопросов.

Для того, чтобы лучше понять, что представляют собой хромосомные нарушения, вначале будет полезно узнать, что такое гены и хромосомы.

Что такое гены и хромосомы?

Наше тело состоит из миллионов клеток. Большинство клеток содержат полный набор генов. У человека тысячи генов. Гены можно сравнить с инструкциями, которые используются для контроля роста и согласованной работы всего организма. Гены отвечают за множество признаков нашего организма, например, за цвет глаз, группу крови или рост.

Гены расположены на нитевидных структурах, называемых хромосомами. В норме в большинстве клеток организма содержится по 46 хромосом. Хромосомы передаются нам от родителей - 23 от мамы, и 23 от папы, поэтому мы часто похожи на своих родителей. Таким образом, у нас два набора по 23 хромосомы, или 23 пары хромосом. Так как на хромосомах расположены гены, мы наследуем по две копии каждого гена, по одной копии от каждого из родителей. Хромосомы (следовательно, и гены) состоят из химического соединения, называемого ДНК.

Рисунок 1: Гены, хромосомы и ДНК

Хромосомы (см. Рисунок 2), пронумерованные от 1 до 22, одинаковые у мужчин и у женщин. Такие хромосомы называют аутосомами. Хромосомы 23-й пары различны у женщин и мужчин, и их называют половыми хромосомами. Есть 2 варианта половых хромосом: Х-хромосома и Y-хромосома. В норме у женщин присутствуют две Х-хромосомы (ХХ), одна из них передается от матери, другая - от отца. В норме у мужчин есть одна X-хромосома и одна Y-хромосома (XY), при этом Х-хромосома передается от матери, а Y-хромосома - от отца. Так, на Рисунке 2 изображены хромосомы мужчины, так как последняя, 23-я, пара представлена сочетанием XY.

Рисунок 2: 23 пары хромосом, распределенные по размеру; хромосома под номером 1 - самая большая. Две последние хромосомы - половые.

Хромосомные изменения

Правильный хромосомный набор является очень важным для нормального развития человека. Это связано с тем, что гены, которые дают «инструкции к действиям» клеткам нашего организма, находятся на хромосомах. Любое изменение количества, размера или структуры наших хромосом может означать изменение количества или последовательности генетической информации. Такие изменения могут привести к трудностям в обучении, задержке развития и другим проблемам здоровья ребенка.

Хромосомные изменения могут быть унаследованы от родителей. Чаще всего хромосомные изменения возникают на этапе формирования яйцеклетки или сперматозоида, или при оплодотворении (вновь возникшие мутации, или мутации de novo). Эти изменения невозможно контролировать.

Существует два основных типа хромосомных изменений. Изменение числа хромосом. При таком изменении существует увеличение или уменьшение числа копий какой-либо хромосомы. Изменение структуры хромосом. При таком изменении материал какой-либо хромосомы поврежден, или изменена последовательность генов. Возможно появление дополнительного или утрата части исходного хромосомного материала.

В данной брошюре мы рассмотрим хромосомные делеции, дупликации, инсерции, инверсии и кольцевые хромосомы. Если Вас интересует информация о хромосомных транслокациях, пожалуйста, обратитесь к брошюре «Хромосомные транслокации».

Изменение числа хромосом.

В норме в каждой клетке человека содержится 46 хромосом. Однако, иногда ребенок рождается либо с большим, либо с меньшим числом хромосом. В таком случае возникает, соответственно, либо избыточное, либо недостаточное число генов, необходимых для регуляции роста и развития организма.

Один из наиболее распространенных примеров генетического заболевания, вызванного избыточным числом хромосом, является синдром Дауна. В клетках людей с этим заболеванием находится 47 хромосом вместо обычных 46-ти, так как присутствует три копии 21-ой хромосомы вместо двух. Другими примерами заболеваний, вызванных избыточным числом хромосом являются синдромы Эдвардса и Патау.

Рисунок 3: Хромосомы девочки (последняя пара хромосом ХХ) с синдромом Дауна. Видны три копии 21-ой хромосомы вместо двух.

Изменение структуры хромосом.

Изменения в структуре хромосом происходят, когда материал определенной хромосомы поврежден, или изменена последовательность генов. К структурным изменениям также относятся избыток или утрата части хромосомного материала. Это может происходить несколькими путями, описанными ниже.

Изменения структуры хромосом могут быть очень небольшими, и специалистам в лабораториях бывает сложно их выявить. Однако даже если структурное изменение найдено, часто бывает сложно предсказать влияние этого изменения на здоровье конкретного ребенка. Это может разочаровать родителей, которые хотят получить исчерпывающую информацию о будущем своего ребенка.

Транслокации

Если Вы хотите больше узнать о транслокациях, пожалуйста, обратитесь к брошюре «Хромосомные транслокации».

Делеции

Термин «хромосомная делеция» означает, что часть хромосомы утрачена или укорочена. Делеция может случиться в любой хромосоме и на протяжении любой части хромосомы. Делеция может быть любого размера. Если утраченный при делеции материал (гены) содержал важную информацию для организма, то у ребенка могут возникать трудности в обучении, задержка развития и другие проблемы со здоровьем. Тяжесть этих проявлений зависит от размеров утраченной части и локализации внутри хромосомы. Примером такого заболевания является синдром Жубер.

Дупликации

Термин «хромосомная дупликация» означает, что часть хромосомы удвоена, и из-за этого возникает избыток генетической информации. Этот избыточный материал хромосомы означает, что организм получает слишком большое число «инструкций», и это может привести к трудностям в обучении, задержке развития и другим проблемам здоровья ребенка. Примером заболевания, вызванного дупликацией части хромосомного материала является моторно-сенсорная нейропатия типа IA.

Инсерции

Хромосомная инсерция (вставка) означает, что часть материала хромосомы оказалась «не на своем месте» на этой же или на другой хромосоме. Если общее количество хромосомного материала не изменилось, то такой человек, как правило, здоров. Однако если такое перемещение приводит к изменению количества хромосомного материала, то у человека могут возникать трудности в обучении, задержка развития и другие проблемы здоровья ребенка.

Кольцевые хромосомы

Термин «кольцевая хромосома» означает, что концы хромосомы соединились, и хромосома приобрела форму кольца (внорме хромосомы человека имеют линейную структуру). Обычно это происходит, когда оба конца одной и той же хромосомы укорочены. Оставшиеся концы хромосомы становятся «липкими» и соединяются, формируя «кольцо». Последствия формирования кольцевых хромосом для организма зависят от размера делеций на концах хромосомы.

Инверсии

Хромосомная инверсия означает такое изменение хромосомы, при котором часть хромосомы развернута, и гены в этом участке расположены в обратном порядке. В большинстве случаев носитель инверсии здоров.

Если у родителя обнаружена необычная хромосомная перестройка, как это может отразиться на ребенке?

Возможны несколько исходов каждой беременности:

  • Ребенок может получить совершенно нормальный набор хромосом.
  • Ребенок может унаследовать такую же хромосомную перестройку, которая есть у родителя.
  • У ребенка могут быть трудности в обучении, задержка развития или другие проблемы со здоровьем.
  • Возможно самопроизвольное прерывание беременности.

Таким образом, у носителя хромосомной перестройки могут рождаться здоровые дети, и во многих случаях происходит именно так. Так как каждая перестройка уникальна, Вашу конкретную ситуацию следует обсудить с врачом-генетиком. Часто бывает, что ребенок рождается с хромосомной перестройкой, несмотря на то, что хромосомный набор родителей нормальный. Такие перестройки называют вновь возникшими, или возникшими “de novo” (от латинского слова). В этих случаях риск повторного рождения ребенка с хромосомной перестройкой у этих же родителей очень мал.

Диагностика хромосомных перестроек

Возможно проведение генетического анализа для выявления носительства хромосомной перестройки. Для анлиза берется образец крови, и клетки крови исследуют в специализированной лаборатории для выявления хромосомных перестроек. Такой анализ называется кариотипированием. Также возможно проведение теста во время беременности для оценки хромосом плода. Такой анализ называется пренатальной диагностикой, и этот вопрос следует обсудить с врачом-генетиком. Более подробная информация на эту тему представлена в брошюрах «Биопсия ворсин хориона» и «Амниоцентез».

Как это касается других членов семьи

Если у одного из членов семьи обнаружена хромосомная перестройка, возможно, Вы захотите обсудить этот вопрос с другими членами семьи. Это даст возможность другим родственникам, при желании, пройти обследование (анализ хромосом в клетках крови) для определения носительства хромосомной перестройки. Это может быть особенно важно для родственников, уже имеющих детей или планирующих беременность. Если они не являются носителями хромосомной перестройки, они не могут передать ее своим детям. Если же они являются носителями, то им может быть предложено пройти обследование во время беременности для анализа хромосом плода.

Некоторым людям сложно обсуждать проблемы, связанные с хромосомной перестройкой, с членами семьи. Они могут бояться причинить беспокойство членам семьи. В некоторых семьях люди из-за этого испытывают сложности в общении и теряют взаимопонимание с родственниками. Врачи-генетики, как правило, имеют большой опыт в решении подобных семейных ситуаций и могут помочь Вам в обсуждении проблемы с другими членами семьи.

Что важно помнить

  • Хромосомная перестройка может как наследоваться от родителей, так и возникать в процессе оплодотворения.
  • Перестройку нельзя исправить - она остается на всю жизнь.
  • Перестройка не заразна, например, ее носитель может быть донором крови.
  • Люди часто испытывают чувство вины в связи с тем, что в их семье есть такая проблема, как хромосомная перестройка. Важно помнить, что это не является чьей-либо виной или следствием чьих-либо действий.
  • Большинство носителей сбалансированных перестроек могут иметь здоровых детей.
Статьи по теме