Факторы патогенности микобактерий туберкулеза, механизм их действия, патогенез туберкулеза, иммунитет. Санитарная микробиология Особенности состава клеточной стенки туберкулезных бактерий

Туберкулез (tuberculosis; от лат. tuberculum – бугорок) – инфекционная болезнь, вызываемая микобактериями, характеризующаяся поражением различных органов и систем (легких, пищеварительного тракта, кожи, костей, мочеполовой системы и др.). Вызывается тремя видами микобактерий: М. tuberculosis, M. bovis, М. africanum. Все три вида отличаются по морфологическим, куль-туральным, биохимическим и патогенным свойствам. Кроме них, к этому роду относятся нетуберкулезные или условно-патогенные микобактерий (М. avium, M. cansasi), которые могут иногда вызывать заболевания человека и животных. Возбудитель был открыт Р. Кохом (1882).

Таксономия. Возбудитель относится к отделу Firmicutes, семейству Mycobacteriaceae, роду Mycobacterium.

Морфология и тинкториальные свойства . Культивирование. М. tuberculosis – длинные (1-3,5 мкм), тонкие (0,2.0,4 мкм), слегка изогнутые палочки, грамположительные, неподвижные, спор и капсул не образуют, окрашиваются по Цилю.Нильсену. На жидких средах через 2-3 нед дают рост в виде морщинистой пленки, а на плотной среде образуют бородавчатый налет. Оптимальная среда для культивирования – яичная среда с добашіением глицерина (среда Левенштейна.Йенсена). Оптимальная биологическая модель – морская свинка. При микрокультивировании на стеклах в жидкой среде через 3 сут образуются микроколонии, где вирулентные микобактерий располагаются в виде «кос», или «жгутов». Этот феномен называется корд-фактором. М. bovis – короткие толстые палочки с зернами. Оптимальная биологическая модель – кролики. М. africanum – тонкие длинные палочки. Растут на простых питательных средах. Температурный оптимум 40.42ºС. Малопатогенны для человека. Вирулентные штаммы М. tuberculosis на плотных средах дают R-колонии.

Ферментативная активность . Туберкулезные микобактерий дают положительный результат при ниациновом тесте, редуцируют нитраты, разлагают мочевину, никотинамид, пиразинамид.

Антигенная структура . Антигенная структура микобактерий довольно сложная. Антигены связаны с клеточной стенкой, рибосомами, цитоплазмой, имеют белковую и липополисахаридную природу, участвуют в реакциях ГЗТ и ГНТ, обладают протективной активностью.

Резистентность . Микобактерий устойчивы к окружающей среде: в пыли сохраняются 10 дней, на книгах, игрушках – до З мес, в воде – до 5 мес, масле – до 10 мес, сыре – до 8 мес, мокроте – до 10 мес. При кипячении погибают через 5 мин. Для дезинфекции используют активированные растворы хлорамина и хлорной извести.

Эпидемиология, патогенез и клиническая картина. Туберкулез распространен повсеместно, является социальной проблемой; ин-фицированность населения, заболеваемость и летальность довольно высоки, особенно в слаборазвитых странах. Восприимчивость людей к туберкулезу всеобщая. На заболеваемость влияют социальные условия жизни населения. Источником инфекции является больной человек; пути передачи инфекции – преимущественно воздушно-капельный, редко контактно-бытовой. Эпидемическую опасность представляют только больные с открытой формой туберкулеза, когда происходит выделение возбудителя в окружающую среду. При заражении (инкубационный период 3.8 нед) на месте внедрения возбудителя формируется первичный туберкулезный комплекс (воспалительная или воспалительно-некротическая реакция), который может распространиться и придать болезни различные формы – от легких до тяжелых септических, с поражением различных органов и систем. Чаще всего туберкулез поражает легкие. Для туберкулезной инфекции характерна реакция ГЗТ, выявляемая внутрикожным введением туберкулина (реакция Манту). Для проведения этой пробы используется PPD-белковый очищенный препарат из микобактерий туберкулеза. Несенсибилизированный организм на препарат не реагирует, но если в организме присутствуют живые микобактерий (у больного или вакцинированного), то через 48 ч развивается местная воспалительная реакция.


Противотуберкулезный иммунитет непрочен и сохраняется только при наличии в организме микобактерий.

Микробиологическая диагностика. Для лабораторного подтверждения диагноза туберкулеза обычно исследуют мокроту, промывные воды бронхов, мочу, спинномозговую жидкость и др. Бактериоскопия мазков, окрашенных по Цилю.Нильсену, эффективна только при высокой концентрации микобактерий в исследуемом материале. Для «обогащения» исследуемого материала используют различные методы, в частности центрифугирование. Бактериологический метод, посев на жидкие и плотные питательные среды более эффективны, но требуют 3-4 нед. Как ускоренный метод диагностики используется микрокультивирование на стеклах в среде Школьникова. Иногда используют биологический метод – заражение морской свинки.

Лечение . Назначают изониазид, рифампицин, этамбутол, протионамид, пиразинамид, циклосерин, стрептомицин, канами-цин, флоримицин, тиоацетазон (тибон), парааминосалицило-вую кислоту (ПАСК).

Профилактика. Проведение комплекса санитарно-гигиенических и противоэпидемических мероприятий (санитарное состояние предприятий, детских учреждений, школ и т.д., выявление больных, взятие на учет семей, диспансеризация, эпидемиологический надзор и т.д.). Специфическую профилактику осуществляют путем введения живой вакцины – BCG (Вас. Calmette.Guerin), полученной Кальметтом и Гереном при ат-тенуации микобактерий на специальной среде. Вакцинируют новорожденных (5-7-й день жизни) внутрикожно с последующей ревакцинацией в 7, 12 и 17 лет. Перед ревакцинацией проводят пробу Манту. При положительной реакции ревакцинацию не проводят.


Морфология Mycobacterium tuberculosis(красные палочки) в мокроте. Окраска по Цилю-Нильсену. Грамположительные тонкие прямые или слегка изогнутые палочки; - Клеточная стенка содержит большое количество восков и липидов (миколовую кислоту), что обусловливает гидрофобность, устойчивость к кислотам, щелочам, спиртам; - Окрашивается по Цилю- Нильсену; - Неподвижны, спор и капсул не образует; - Возможен переход в фильтрующиеся и L-формы




Культуральные свойства Аэробы; Растут на средах, содержащих яйца, глицерин, картофель, аспарагин, витамины, соли; Чаще всего применяют яичную среду Левенштейна-Йенсена и синтетическую среду Сотона; растут медленно (рост обнаруживается через 2-3 недели и позднее); Колонии сухие, морщинистые, сероватые; Обладают биохимической активностью, позволяющей дифференцировать виды Основной тест – ниациновая проба (накопление в жидкой среде никотиновой кислоты Среда Левенштейна-Йенсена и рост микобактерий.




Факторы патогенности Фактор адгезии - корд – фактор = сложный эфир трегаллозы и двухостатков миколовой кислоты; Антифагоцитарные факторы – воска (особенно воск Д),сульфаты и некоторые другие соединения, препятствующие слиянию фаго- и лизосомы; Сульфолипиды подавляют активностьлизосомальных ферментов; Фосатидная и восковая фракции липидов вызывают сенсибилизацию организма; Ацетон-растворимые липиды усиливают иммуносупрессивные свойства микобактерий и модифицируют мемраны клетки хозяина; Липиды обеспечивают устойчивость к комплементу, свободным радикалам фагоцитов Основной фактор –туберкулин – обладает токсическими и аллергическими свойствами




Взаимодействие Mycobacterium tuberculosis с организмом человека начинается при попадании возбудителя в легкиеMycobacterium tuberculosis После адгезии с помощью корд-фактора захватываются альвеолярными макрофагами; События, которые происходят дальше (макрофаги либо сдерживают размножение микобактерий, либо нет), определяются соотношением между бактерицидной активностью макрофагов и вирулентностью микобактерий. После размножения внутри макрофага микобактерии его разрушают Моноциты, выходящие из кровотока под влиянием факторов хемотаксиса, захватывают освобождаемые из разрушенных макрофагов микобактерий Макрофаги переносят микобактерии в ближайшие лимфоузлы, где они долго сохраняются в виду незавершенного фагоцитоза Таким образом, первоначальное попадание возбудителя в легкие или другие органы вызывает развитие малого или неспецифического воспаления с макрофагальной инфильтрацией


Патогенез (продолжение) Через 2-4 нед после заражения начинается следующий этап взаимодействия микобактерий с макроорганизмом. При этом наблюдаются два процесса - реакция повреждения ткани по типу ГЗТ(специфическая воспалительная реакция) и реакция активации макрофагов. С развитием иммунитета и накоплением в первичном очаге большого количества активированных макрофагов формируется туберкулезная гранулема.гранулема Гранулемы состоят из лимфоцитов и активированных макрофагов, то есть эпителиоидных и гигантских клеток.эпителиоидныхгигантских клеток Развитие реакции повреждения ткани приводит к образованию в центре гранулемы очага казеозного некроза В случае заживления очага некротические массы уплотняются, обызвествляются в результате отложения солей кальция, вокруг очага формируется соединительно-тканная капсула – очаг Гона НО микобактерии в виде L-форм сохраняют в таком очаге жизнеспособность долгие годы При снижении резистентности макроорганизма происходит активация очага с развитием вторичного туберкулеза








Иммунитет Противотуберкулезный иммунитет формируется в ответ на проникновение в организм микобактерий в процессе инфекции или после вакцинации и носит нестерильный, инфекционный характер, что обусловлено длительной персистенцией L-форм Решающая роль принадлежит клеточному иммунитету Исход заболевания определяется активностью Т-хелперов, которые активируют фагоцитарную активность макрофагов и активность Т-киллеров


Эпидемиология Основной источник инфекции – больной туберкулезом органов дыхания Пути передачи – воздушно-капельный, реже алиментарный, контактный микобактерий туберкулеза очень устойчивы во внешней среде. В проточной воде они могут сохранять жизнеспособность до 1 года, в почве и навозе 6 мес., на различных предметах до 3 мес., в библиотечной пыли 18 мес., в высушенном гное и мокроте до 10мес. При кипячении палочка Коха погибает через 5 мин, в желудочном соке через 6ч, при пастеризации через 30мин прямой солнечный свет убивает микобактерии в течение полутора часов, а ультрафиолетовые лучи за 2-3 минуты. Дезинфектанты, содержащие хлор, убивают микобактерии в течение 5 часов.


Эпидемиология (продолжение) Туберкулез распространен повсеместно Росту заболеваемости способствуют социально- экономические факторы (основной фактор – голодание) С 1990 года во всем мире регистрируется резкий подъем заболеваемости Вирус иммунодефицита человека (ВИЧ) и синдром приобретенного иммунодефицита вызвали заметное увеличение числа случаев туберкулеза в некоторых странах С другой стороны, проблема заключается в распространении микобактерий с множественной лекарственной устойчивостью


Лечение В настоящее время по степени эффективности противотуберкулезные препараты делятся на 3 группы: Группа А – изониазид, рифампицин и их производные (рифабутин, рифатер) Группа В – стрептомицин, канамицин, этионамид, циклосерин, фторхинолоны и др. Группа С – ПАСК и тиоацетозон


Вакцина БЦЖ (BCG – бацилла Кальметта и Герена) – содержит живые авирулентные микобактерии, полученные из M.bovis путем многолетних пассажей на средах, содержащих желчь Поствакцинальный иммунитет связан с формированием ГЗТ (гиперчувствительности замедленного типа) Специфическая п рофилактика


Лабораторная диагностика Клинический материал: гной, мокрота, кровь, бронхиальный экссудат, спиномозговая жидкость, плевральная жидкость,моча и др. Методы: 1.Бактериоскопический: прямая окраска мазка мокроты по методу Циля-Нильсена или мазка после обогащения (концентрирования методами флотации или гомогенизации)


Лабораторная диагностика 4.Бактериологический (культуральный) метод используется для проверки эффективности лечения (2-8 недель необходимы для роста колоний на среде Левенштейна-Йенсена и еще некоторое время для оценки эффекта препаратов, вводимых в среду роста); 5.Серологический метод (РСК, ИФА, радиоиммунный и др.); 6.Биологический метод (заражение морских свинок и кролика с последующим выделением чистой культуры возбудителя); 7.Туберкулиновая проба Манту (см.далее); 8.Молекулярно-генетический метод (ПЦР)


Кожно-аллергическая проба Манту Внутрикожное введение высокоочищенного туберкулина (PPD= Purified Protein Derivative) вызывает у инфицированных микобактериями людей местную воспалительную реакцию в виде инфильтрата и покраснения (реакция ГЗТ). Неинфицированные люди никакой реакции на введение туберкулина не дают. Эту пробу применяют для выявления инфицированных, сенсибилизированных людей.

Патогенность туберкулезных бак­терий связана с высоким содержанием липидов. Содержащиеся в липидах фтиоидная, миколовая и другие жирные кислоты оказывают своеобразное токсическое действие на клетки тканей. Например, фосфа­тидная фракция, наиболее активная из всех липидов, обладает способностью вызы­вать внормальном организме специфическую тканевую реакцию с образованием эпителиоидных клеток, жировая фракция – туберкулоидной ткани. Эти свойства указанных липидных фракций связаны с наличием в их составе фтиоидной кислоты. Восковая фракция, содержащая миколовую кислоту, вызывает реакции с образова­нием многочисленных гигантских клеток. Таким образом, с липидами, состоящими из нейтральных жиров, восков, стеринов, фосфатидов, сульфатидов и содержащими такие жирные кислоты, как фтиоидная, миколовая, туберкуло-стеариновая, пальми­тиновая и другие, связаны патогенные свойства туберкулезной палочки и те биологиче­ские реакции, которыми ткани отвечают на их внедрение. Главным фактором патогенности является токсический гликолипид (корд-фактор), который располагается на поверхности и в толще клеточной стенки. По химической природе он представля­ет собой полимер, состоящий из одной молекулы дисахарида трегалозы и связанных с ней в эквивалентных соотношениях миколовой и миколиновой высокомолекуляр­ных жирных кислот – трегалоза-6,6"-димиколат (С 186 Н 366 О ш). Корд-фактор не только оказывает токсическое действие на ткани, но и защищает туберкулезные па­лочки от фагоцитоза, блокируя окислительное фосфорилирование в митохондриях макрофагов. Будучи поглощенными фагоцитами, они размножаются в них и вызы­вают их гибель. Корд-фактор обладает двумя характерными свойствами, указываю­щими на его важную роль как основного фактора патогенности.

1. При внутрибрюшинном заражении белых мышей он вызывает их гибель. Подобным действи­ем не обладает ни одна другая фракция туберкулезной палочки.

2. Он подавляет миграцию лейкоцитов больного туберкулезом человека (in vivo и in vitro).

М. tuberculosis, лишенные корд-фактора, являются непатогенными или слабопа­тогенными для человека и морских свинок. С необычным химическим составом туберкулезных клеток связана также способность их вызывать характерную для туберкулеза реакцию гиперчувствительности замедленного типа, выявляемую с по­мощью туберкулиновой пробы.

121. Свойства микобактерий, определяемые высоким содержанием липидов.

1. Устойчивость к кислотам, щелочам и спирту

2. Трудная окрашиваемость крсителями. Для их окрашивания применяют интенсивные методы. Например, по списобу Циля-нильсена окрашивают концентрированным раствором карболового фуксина при подогревании.. При докрашивании метиленовым синим в мазке все бактерии, клеточные элементы и слизь окрашиваются в синий цвет, а туберклезные палочки сохраняют исходную красную

3. относительно высокая устойчивость к высушиванию и действию солнечных лучей.

4. Устойчивость к действию обычных дезинфизирующих веществ

5. Высокая гидрофобность, которая находит свое отражение в культуральных свойствах: на глицериновом бульоне рост в виде пленки желтоватого цвета, которая постепенно утолщается, становится ломкой и приобретает бугристо-морщинистый вид, при этом быльон остается прозрачным.

6.Патогенность туберкулезных бактерий. Содержащаяся в липидах фтиоидная, миколовая и другие жирные кислоты оказывают своеобразное токсическое действие на клетки тканей

122. Эпидемиология туберкулеза .

Источником заражения является человек больной туберкулезом(реже животные).От больного человека возбудитель выделяется чаще всего с мокротой, а так же с мочой, испражнениями и гноем.Туберкулезная палочка проникает в ограниз через дыхательные пути-воздушно-капельным и, особенно часто воздушно-пылевым путем.Также вхожными воротами могут быть любые слизистые оболоччи и любой поврежденный участок кожи.Зараженте М.bovis, наблюдается чаще всего у детей, поскольку молоко для них служит основным продуктом питания, однако заражение также возможно от больных животных и аэрогенным путем. Попадая в окружающую среду, микобактерии туберкулеза длительное время сохраняют свою жизнеспособность. Так, в высохшей мокроте они выживают в течение нескольких недель, на предметах, окружающих больного (белье,книги) - более 3 мес., в воде - более года, в почве - до 6 мес.,длительно сохраняются в молочных продуктах. К действию дезинфицирующих

ГБОУ ВПО “Уральский государственный медицинский университет” Министерства здравоохранения Российской Федерации Кафедра микробиологии, вирусологии и иммунологии

Методические указания к практическим занятиям для студентов

ООП специальности 060301.65 Фармация Дисциплина С2.Б.11 Микробиология

1. Тема: Возбудители туберкулеза

2. Цели занятия : Изучить со студентами свойства возбудителей туберкулеза, факторы патогенности, патогенез, методы диагностики, профилактики и лечения туберкулеза.

3. Задачи занятия:

3.1. Изучение свойств возбудителей туберкулеза.

3.2. Изучение патогенеза туберкулеза.

3.3. Изучение методов диагностики, профилактики и лечения туберкулеза.

3.4. Выполнение самостоятельной работы.

компетенции

Способность и

Морфологичес-

Пользоваться

Методикой окраски

готовность

кие, культураль-

инструментарием

препаратов по Цилю-

анализировать

ные, биохимии-

при проведении

Нильсену

социально значимые

ческие свойства

микробиологических

проблемы и процессы,

возбудителей

исследований

использовать на

туберкулеза

практике методы

гуманитарных,

естественнонаучных,

медико-биологических

и клинических наук в

различных видах

профессиональной и

социальной

деятельности

Способность и

Принципы и

Проводить

готовность к участию

санитарно-

биологическим

в постановке научных

диагностики,

просветительную

понятийным

задач и их

профилактики и

работу с населением

аппаратом

экспериментальной

реализации

туберкулеза

4. Продолжительность занятия в академических часах : 3 часа.

5. Контрольные вопросы по теме:

5.1. Морфологические, тинкториальные, культуральные и биохимические свойства возбудителей туберкулеза.

5.2. Факторы патогенности возбудителей туберкулеза.

5.3. Методы диагностики, профилактики и лечения туберкулеза.

6. Задания и методические указания к их выполнению.

На занятии студенту необходимо:

6.1. Ответить на вопросы преподавателя.

6.2. Принять участие в обсуждении изучаемых вопросов.

6.3. Выполнить самостоятельную работу.

Теоретическая справка Туберкулез – хроническое инфекционное заболевание, сопровождающееся

специфическим поражением различных органов и систем (органов дыхания, лимфатических узлов, кишечника, костей, суставов, глаз, кожи, почек, мочевыводящих путей, половых органов, ЦНС). При туберкулезе в органах образуются специфические гранулемы (granulum – зернышко) в виде узелков или бугорков (tuberculum – бугорок) с последующим их творожистым перерождением (распадом) и обызвествлением.

Историческая справка. С глубокой древности это заболевание было известно под названиями чахотка , бугорчатка , золотуха из-за характерных клинических признаков. Впервые отделил “чахотку” от других легочных заболеваний Лаэннек в 1819 г., он ввел термин “туберкулез” (отсюда синоним - бугорчатка). В 1882 г. Р. Кох обнаружил возбудителя туберкулеза и получил чистую культуру на сывороточной среде (палочка или бацилла Коха). В 1890 г. Р. Кох получил туберкулин (“водно-глицериновую вытяжку туберкулезных культур”). В 1911 г. Р. Кох за открытие возбудителя туберкулеза был удостоен Нобелевской премии.

Таксономия. Отдел Firmicutes, семейство Mycobacteriaceae, род Mycobacterium.

Туберкулез у человека чаще всего вызывают три вида микобактерий: M. tuberculоsis (палочка Коха, человеческий вид - вызывает заболевание в 92% случаев), М. bоvis (бычий вид - вызывает заболевание в 5% случаев), М. аfriсаnum (промежуточный вид - вызывает заболевание в 3% случаев, в Южной Африке – намного чаще). В редких случаях туберкулез у человека вызывают M. microti (мышиный тип) и M. avium (птичий тип, вызывающий инфекцию у лиц с иммунодефицитом).

Морфологические и тинкториальные свойства. Возбудители туберкулеза характеризуются выраженным полиморфизмом (кокковидные, нитевидные, ветвистые, колбовидные формы). В основном они имеют форму длинных тонких (М. tuberculosis , М. africanum ) или коротких и толстых (М. bovis ) палочек с зернистой цитоплазмой, содержащей от 2 до 12 зерен различной величины (зерна метафосфатов – зерна Муха). Иногда они образуют нитевидные структуры, напоминающие мицелий грибов, что и послужило основанием для их названия (mykes - гриб и bacterium - бактерия). Неподвижные. Спор не образуют. Имеют микрокапсулу.

Грамположительные. Микобактерии являются кислото-, спирто- и щелочеустойчивыми бактериями. Для их окраски применяют метод Циля-

Нильсена (термокислотное протравливание карболовым фуксином). При такой окраске микобактерии выглядят в виде ярко-красных палочек, расположенных одиночно или небольшими скоплениями из 2-3 клетки.

Культуральные свойства. Облигатные аэробы. Растут медленно из-за наличия в клеточной стенке липидов, замедляющих обмен веществ с окружающей средой. Оптимальная температура роста 37-38ºС. Оптимальное значение рН 6,8-7,2. Микобактерии требовательны к питательным средам, глицеринзависимые . Для подавления токсического действия образуемых в процессе метаболизма жирных кислот к средам добавляют активированный уголь, сыворотку крови животных и альбумин, а для подавления роста сопутствующей микрофлоры - красители (малахитовый зеленый) и антибиотики, не действующие на микобактерии.

Элективные питательные среды для микобактерий:

Яичные среды Левенштейна-Йенсена, Финна-2;

- глицериновые среды Миддлбрука;

- картофельные среды с желчью;

- полусинтетическая среда Школьниковой;

- синтетические среды Сотона, Дюбо.

На плотных средах на 15-20 день инкубирования микобактерии образуют шероховатые плотные колонии кремового цвета бородавчатого вида (напоминают

цветную капусту).

В жидких средах через 5-7 дней на поверхности образуется толстая сухая морщинистая пленка кремового цвета. При этом бульон остается прозрачным.

Для экспресс-диагностики используют метод микрокультивирования на стеклах в жидкой среде (метод микрокультур Прайса ), при котором через 48-72 часа отмечается рост микобактерий в виде переплетенных девичьих “кос” или “жгутов” благодаря корд-фактору (англ. cord - жгут, веревка).

Химический состав. Основные компоненты микобактерий: белки (туберкулопротеины), углеводы и липиды.

Туберкулопротеины составляют 56% сухой массы вещества микробной клетки. Они являются основными носителями антигенных свойств микобактерий, высокотоксичны, вызывают развитие реакции гиперчувствительности 4-го типа.

На долю полисахаридов приходится 15% сухой массы вещества микобактерий. Это родоспецифические гаптены.

На долю липидов (фтионовая кислота, масляная, пальмитиновая, туберкулостеариновая и другие жирные кислоты, корд-фактор и воск Д, в состав которого входит миколовая кислота) приходится от 10 до 40% сухой массы вещества микобактерий. Высокое содержание липидов определяет кислото-, спирто- и щелочеустойчивость возбудителя, вирулентность, трудность окрашивания клеток обычными методами и устойчивость в окружающей среде. Липиды экранируют бактериальную клетку, подавляют фагоцитоз, блокируют активность клеточных ферментов, вызывают развитие гранулем и казеозного некроза.

Резистентность. В высохшей мокроте больного клетки сохраняют жизнеспособность и вирулентность в течение 5-6 месяцев. На предметах больного сохраняются более 3 месяцев. В почве сохраняются до 6 месяцев, в воде – до 15 месяцев. Солнечный свет вызывает гибель микобактерий через 1,5 часа, УФЛ – через 2-3 минуты. При пастеризации погибают через 30 минут. Хлорсодержащие

препараты вызывают гибель возбудителей туберкулеза в течение 3-5 часов, 5%- ный раствор фенола - через 6 часов.

Факторы патогенности микобактерий:

Корд-фактор – гликолипид клеточной стенки, вызывает повреждение клеточных мембран и ингибирует образование фаголизосомы, обусловливая развитие незавершенного фагоцитоза;

Липиды , содержащие миколовую и фтионовую кислоты, вызывают появление многочисленных гигантских клеток;

Возбудители туберкулеза не образуют экзотоксинов. Высокотоксичными являются продукты распада клеток.

Главным фактором патогенности микобактерий является корд-фактор (название происходит от англ. соrd - жгут, веревка). Корд-фактор обусловливает “скученный тип роста” в жидких средах в виде “извилистых тяжей” (или кос), в которых клетки микобактерий располагаются параллельными цепочками.

Эпидемиология. Туберкулез распространен повсеместно. Основной источник инфекции - больной человек с туберкулезом органов дыхания, выделяющий микробы в окружающую среду с мокротой. Источниками инфекции могут также быть люди с внелегочными формами туберкулеза и больные животные (крупный рогатый скот, верблюды, свиньи, козы и овцы). Основной механизм заражения – аэрогенный. Пути передачи возбудителя - воздушно-капельный и воздушно-пылевой. Входными воротами при этом является слизистая оболочка полости рта, бронхи и легкие. Реже заражение туберкулезом может происходить алиментарным (пищевым) путем при употреблении термически не обработанных мясо-молочных продуктов. Возможен контактно-бытовой путь передачи инфекции от больных туберкулезом при использовании инфицированной одежды, игрушек, книг, посуды и других предметов. Известны случаи заражения людей при уходе за больными животными.

Патогенез. Проникнув в организм человека, микобактерии фагоцитируются.

В фагоцитах формируются фагосомы, внутри которых микобактерии остаются живыми и размножаются. В фагоцитах микобактерии транспортируются в регионарные лимфатические узлы, сохраняясь длительное время в “дремлющем” состоянии (незавершенный фагоцитоз). При этом происходит воспаление лимфатических путей (лимфангоит ) и лимфатических узлов (лимфаденит ). В месте внедрения возбудителя формируется очаг воспаления. Это воспаление в течение нескольких недель приобретает специфический характер (развивается реакция гиперчувствительности замедленного типа), в результате чего формируется гранулема. В последующем происходит трансформация макрофагов в эпителиоидные клетки. При слиянии эпителиоидных клеток образуются гигантские многоядерные клетки. Вокруг очага воспаления формируется соединительнотканная капсула, некротизированные ткани обызвествляются. В результате этого происходит формирование первичного туберкулезного комплекса , внутри которого находится казеозная некротизированная ткань и остаются живые микобактерии.

Клиника. Инкубационный период длится от 3-8 недель до 1 года и более.

Клинические проявления туберкулеза многообразны, поскольку микобактерии могут поражать любые органы (кишечник, мочеполовые органы, кожу, суставы). Симптомами туберкулеза являются быстрая утомляемость, слабость, потеря массы

тела, длительная субфебрильная температура, обильное ночное потоотделение, кашель с мокротой с кровью, одышкой. Симптомов, характерных только для туберкулеза, нет. При поражении кожи отмечаются изъязвленные очаги. При туберкулезе костей и суставов возникают поражения, характерные для артритов любой этиологии: истончение хрящей, возникновение шипов, сужение полостей суставов.

Иммунитет. Противотуберкулезный иммунитет формируется в ответ на проникновение в организм микобактерий в процессе инфицирования или вакцинации и носит нестерильный характер, что обусловлено длительной персистенцией бактерий в организме. Он проявляется через 4-8 недель после попадания микробов в организм. Формируется как клеточный, так и гуморальный иммунитет.

Клеточный иммунитет проявляется состоянием повышенной чувствительности (сенсибилизации). Благодаря этому организм приобретает способность быстро связывать новую дозу возбудителя и удалять ее из организма: Т-лимфоциты распознают клетки, инфицированные микобактериями, атакуют их и разрушают.

Гуморальный иммунитет проявляется синтезом антител к антигенам микобактерий. Образуются циркулирующие иммунные комплексы (ЦИК), которые способствуют удалению антигенов из организма.

Иммунитет при туберкулезе сохраняется до тех пор, пока в организме есть возбудитель. Такой иммунитет называют нестерильным или инфекционным. После освобождения организма от микобактерий иммунитет быстро исчезает.

Микробиологическая диагностика. Исследуемый материал - мокрота,

аспират бронхов, отделяемое свищей, СМЖ, моча, испражнения. Чаще всего исследуют мокроту. Для диагностики туберкулеза применяют основные и дополнительные методы исследования.

Основные методы:

- бактериоскопический метод (световая и люминесцентная микроскопия);

- бактериологический метод.

Дополнительные методы:

- биологический метод;

- серологический метод;

- кожные аллергические пробы;

- молекулярно-биологический метод (ПЦР).

Бактериоскопическое исследование – это многократное проведение прямой микроскопии мазков из исследуемого материала, окрашенных по ЦилюНильсену. В препаратах можно обнаружить единичные микроорганизмы, если в 1 мл мокроты их содержится не менее 10000-100000 бактериальных клеток (предел метода). Этот метод применяется:

- при обследовании лиц с симптомами, подозрительными на туберкулез (кашель с выделением мокроты более 3 недель, боли в грудной клетке, кровохарканье, потеря массы тела);

- у лиц, контактировавших с больными туберкулезом;

- у лиц, имеющих рентгенологические изменения в легких, подозрительные на туберкулез.

При получении отрицательных результатов прибегают к методам обогащения материала: центрифугированию (седиментации) и флотации . Чаще применяют метод флотации.

Метод центрифугирования – исследуемый материал обрабатывают щелочью и центрифугируют. Препарат для микроскопирования готовят из осадка.

Метод флотации – исследуемый материал обрабатывают смесью щелочи и ксилола (бензина, бензола, толуола). Пробу энергично встряхивают 10-15 минут, добавляют дистиллированную воду и выдерживают в течение 1-2 часов при комнатной температуре. Капельки углевода адсорбируют микобактерии и всплывают, образуя на поверхности пену. Препарат для микроскопирования готовят из образующейся пены.

Бактериологическое исследование проводят путем высева исследуемого материала (после обработки 6-12% раствором серной кислоты) на 2-3 различные по составу питательные среды одновременно. В качестве ускоренных методов бактериологической диагностики, для сокращения времени выделения и идентификации возбудителя до 3-4 дней, применяют метод микрокультур (метод Прайса), а также полностью автоматизированные коммерческие системы бульонного культивирования ВАСТЕС MGIT 960 и МВ/ВасТ.

Бактериологический метод позволяет получить чистую культуру для определения ее вирулентности и чувствительности к лекарственным препаратам. Этот метод широко применяется и для контроля за эффективностью проводимой терапии.

Биологическая проба наиболее чувствительна, так как позволяет обнаружить от 1 до 5 микробных клеток в исследуемом материале. Метод используется при исследовании биопсийного материала, а также при получении отрицательных результатов при использовании первых двух методов исследования. Для этого морским свинкам подкожно или внутрибрюшинно вводят исследуемый материал (1 мл). Через 1-2 месяца у животных развивается генерализованный туберкулез с летальным исходом.

Серологический метод . Предложены РСК, РНГА, иммуноферментный анализ, иммуноблоттинг, определение ЦИК.

Туберкулинодиагностика основана на определении повышенной чувствительности организма к туберкулину (в результате заражения возбудителями туберкулеза или специфической вакцинации) с помощью кожных аллергических проб. Для постановки кожной аллергической пробы используют туберкулин. Туберкулин - это общее название препаратов, полученных из микобактерии человеческого или бычьего типов:

- старый туберкулин Коха - АТК (Alt Tuberculin Косh), впервые получен в 1880 г. Р. Кохом. Представляет собой фильтрат автоклавированной 5-6-недельной бульонной культуры микобактерий туберкулеза;

- сухой очищенный туберкулин - РРD (Purified Protein Derivative),

полученный из культур M. tuberculosis и M. bovis ;

- очищенный туберкулин, приготовленный М.А. Линниковой (РРD-L) из культур M. tuberculosis и M. bovis .

Для диагностики туберкулеза первоначально использовали накожную пробу Пирке (скарификационную). В настоящее время с целью своевременного выявления

первичного инфицирования детей и подростков применяется внутрикожная проба Манту . При постановке пробы Манту туберкулин (РРD) вводят строго внутрикожно на внутреннюю поверхность средней трети предплечья до образования “пуговки”. Результаты пробы учитывают через 48-72 часа по наличию папулы. Проба Манту оценивается следующим образом:

- отрицательная - наличие реакции от укола до 2 мм в диаметре;

- сомнительная - папула диаметром 2-4 мм или гиперемия;

- положительная - папула диаметром 5-17 мм у детей и подростков и 5-21 мм

у взрослых;

- гиперергическая - папула диаметром более 17 мм у детей и подростков и более 21 мм у взрослых.

Туберкулиновая реакция становится положительной через 4-6 недель после инфицирования или вакцинации. После вакцинации положительные реакции на туберкулин сохраняются в течение 3-7 лет. Положительный результат нельзя рассматривать как признак активного процесса. Положительная проба Манту указывает, что человек ранее был инфицирован микобактериями. Люди с положительными туберкулиновыми пробами подвержены риску заболевания в результате активации первичного очага. Если у взрослых положительная реакция свидетельствует об инфицировании, то у детей, ранее не реагировавших на туберкулин, появление впервые зарегистрированной положительной реакции (вираж туберкулиновой пробы ) указывает на недавнее заражение и служит показанием для проведения клинического обследования и лечения.

При отрицательной реакции риск активизации первичного очага отсутствует, но существует опасность первичного инфицирования. Отрицательная проба отмечается у здоровых неинфицированных лиц, а также у больных промежуточными формами туберкулеза.

Для экспресс-диагностики туберкулеза применяют РИФ с использованием видоспецифических моноклональных антител, метод лазерной флюоресценции, микробиочипы, а также ПЦР, позволяющую сократить исследования до 2 суток.

Лечение. Антибиотикотерапия - основной метод лечения туберкулеза. По степени эффективности противотуберкулезные препараты делятся на 3 группы:

Группа А - наиболее эффективные препараты: изониазид (антиметаболит, аналог изоникотиновой кислоты, ингибирует синтез ферментов, участвующих в синтезе миколовых кислот, которые входят в состав клеточной стенки микобактерий), рифампицин и их производные. Получены препараты, превосходящие рифампицин по лечебным свойствам (рифапентин и рифабутин), а также комбинированные препараты (рифатер, рифанг и т. д.);

Группа В - препараты средней эффективности: этамбутол (синтетический препарат, ингибирует ферменты, участвующие в синтезе клеточной стенки микобактерий, активен только в отношении размножающихся бактерий), канамицин, стрептомицин, циклосерин, этионамид (протионамид), пиразинамид, флоримицин, производные фторхинолонов;

Группа С - малые противотуберкулезные препараты (ПАСК и тибон или тиоцетозон). Эта группа препаратов в экономически развитых странах и в России не применяется.

Очень быстро появляются штаммы микобактерий, резистентные к противотуберкулезным препаратам. Поэтому используют комбинации препаратов с разным механизмом действия, а также производят частую замену препаратов. Это замедляет появление устойчивых форм. В современных схемах лечения применяют одновременно по 3-5 препаратов (трех-пятикомпонентные схемы лечения).

Специфическая профилактика. Специфическую профилактику осуществляют путем введения живой вакцины БЦЖ (ВСG - Bacille Calmette-Guerin). Штамм БЦЖ селекционирован в 1919 г. А. Кальметтом и К. Гереном путем длительного пассирования M. bovis на картофельно-глицериновой среде с добавлением желчи.

Вакцинацию проводят у новорожденных на 3-7-й день жизни внутрикожно. На месте введения вакцины формируется инфильтрат с небольшим узелком в центре. Обратное развитие инфильтрата происходит в течение 3-5 месяцев. Ревакцинация – в 7 и 14 лет лицам с отрицательной реакцией Манту, поэтому перед ее проведением ставится проба Манту. У новорожденных со сниженной резистентностью и в регионах, благополучных по туберкулезу, применяется менее реактогенная вакцина БЦЖ-М, содержащая в 2 раза меньшее количество микробов.

После обсуждения теоретических вопросов преподаватель объясняет порядок проведения самостоятельной работы.

Самостоятельная работа:

1. Студенты готовят препараты из культур непатогенных микобактерий, окрашивают их по Цилю-Нильсену, микроскопируют, зарисовывают микроскопическую картину в рабочую тетрадь.

2. В рабочей тетради студенты зарисовывают схему лабораторной диагностики туберкулеза.

7. Оценивание знаний, умений, навыков по теме занятия:

Ответы на вопросы и активность на занятии оцениваются по 5-балльной системе.

8. Литература для подготовки темы:

8.1. Основная:

1. Галынкин В., Заикина Н., Кочеровец В. Основы фармацевтической микробиологии. 2008.

2. Медицинская микробиология, вирусология и иммунология: учебник для студентов медицинских вузов. Под ред. А.А. Воробьева. Учебники и учеб. пособия для высшей школы. Издательство: Медицинское информационное агентство, 2012. – 702 с.

3. Микробиология: учеб. для студентов учреждений высш. проф. образования, обучающихся по специальности 060301.65 “Фармация” / под ред. В.В. Зверева, М.Н. Бойченко. – М.: ГЭОТАР-Медиа, 2012. – 608 с.: ил.

4. Одегова Т.Ф., Олешко Г.И., Новикова В.В. Микробиология. Учебник для фармацевтических вузов и факультетов. - Пермь, 2009. - 378 с.

8.2. Дополнительная:

1. Коротяев А.И. Медицинская микробиология, иммунология и вирусология: Учебник для студентов мед. вузов / А.И. Коротяев, С.А. Бабичев. - 5-е изд., испр. и

доп. – СПб.: СпецЛит, 2012. – 759 с.: ил.

2. Медицинская микробиология: учебник. 4-е изд. Поздеев О.К. / Под ред. В.И. Покровского. – 2010. – 768 с.

3. Руководство по медицинской микробиологии. Общая и санитарная микробиология. Книга 1 / Колл. авторов // Под редакцией Лабинской А.С., Волиной Е.Г. – М.: Издательство БИНОМ, 2008. – 1080 с.: ил.

Методические указания переработаны и дополнены профессором Литусовым Н.В.

Обсуждены на заседании кафедры микробиологии, вирусологии и иммунологии.

Микобактерии туберкулеза (МБТ) относятся к семейству бактерий Micobacteriacae , порядку Actinomycetalis , роду Mycobacterium . Род Mycobacterium насчитывает свыше 100 видов, большинство из которых являются сапрофитными микроорганизмами, широко распространенными в окружающей среде.

Этимологически слово «микобактерия» происходит из греческих слов myces - гриб и bacterium , bactron - палочка, прутик. Компонент названия «гриб» обусловлен тенденцией этих микроорганизмов образовывать нитчатые и ветвящиеся формы, похожие на плесень.

С позиций клинической медицины микобактерия туберкулеза, открытая немецким ученым Робертом Кохом, является наиболее важным видом актиномицетов, которые объединены в комплекс, включающий М. tuberculosis (МБТ); М. bovis и ее вариант БЦЖ (бацилла Кальметта-Герена); М. africanum и М. microti . Эта группа микобактерий отличается выраженным генетическим сходством.

М. microti считается не патогенной для человека, однако вызывает заболевание у мышей, напоминающее туберкулез. Культура БЦЖ не является патогенной для человека. Микобактерия туберкулеза (МБТ) является до 95% случаев причиной заболевания туберкулезом человека в зависимости от территории проживания. Вместе с тем М. bovis и М. africanum вызывают заболевание у человека, клинически не отличающееся от классического туберкулеза.

Микобактерии, не входящие в комплекс М. Tuberculosis , могут стать причиной микобактериозов. Такие микобактерий объединяют в комплексы, наиболее важными из которых являются: М. avium , М. fortinatum и М. terrae , М. leprae , М. ulcerance .

Представленные в дальнейшем материалы о туберкулезе имеют отн ошение только к заболеванию, вызываемому М. tuberculosis (МБТ), — бактерии Коха (БК), typus humanus .

Естественный резервуар туберкулезной микобактерии - человек, домашние и дикие животные, птицы.

МБТ внешне представляют собой тонкие изогнутые палочки, стойкие к кислотам, щелочам и высыханию. Наружная оболочка бактерии содержит сложные воска и гликолипиды.

МБТ могут размножаться как в макрофагах, так и вне клеток.

МБТ размножаются относительно медленно. Размножение происходит в основном путем простого клеточного деления. На обогащенных питательных средах МБТ размножаются с периодом удвоения от 18 до 24 ч. Для роста в культуре микобактерии туберкулеза, полученных в клинических условиях, необходимо от 4 до 6 нед.

Самостоятельным движением МБТ не обладают. Температурные границы роста находятся между 29 и 42 ° С (оптимальная - 37-38 °С). МБТ обладают устойчивостью к физическим и химическим агентам; они сохраняют жизнеспособность при очень низких температурах, а повышение до 80° С могут выдерживать в течение 5 мин.

Во внешней среде микобактерия туберкулеза достаточно устойчива. В воде она может сохраняться до 150 дней. Высохшие микобактерии вызывают туберкулез у морских свинок через 1-1,5 года, лиофилизированные и замороженные жизнеспособны до 30 лет.

При интенсивном облучении солнцем и при высокой температуре окружающей среды жизнеспособность МБТ резко снижается; напротив, в темноте и сырости выживаемость их весьма значительна. Вне живого организма они остаются жизнеспособными в течение многих месяцев, в особенности в темных, сырых помещениях.

МБТ выявляются с помощью уникального свойства к окрашиванию (кислотоустойчивости), отличающего их от многих других возбудителей инфекции. Циль (Ziehl) и Нильсен (Neelsen) в 1883 г. разработали специальный контрастный метод окраски МБТ, основанный на свойстве кислотоустойчивости. Препарат, окрашенный при подогревании карболовым фуксином, обесцвечивается раствором серной кислоты и после промывания водой докрашивается раствором метиленовой синьки (способ Циля-Нильсена). В отличие от некислотоустойчивых бактерий, туберкулезные микобактерии окрашиваются в красный цвет, не обесцвечиваются при действии раствора кислоты и хорошо видны на синем фоне при микроскопии. Способ Циля-Нильсена до сих пор является одним из основных методов окраски МБТ при микроскопии. Более чувствительной, чем кислоустойчивый метод окраски, является окраска аурамином МБТ с последующей флуорисцентной микроскопией (рис. 1-1-1, 1-1-2, см. вклейку).

С липидной фракцией внешней оболочки МБТ связывают устойчивость возбудителей туберкулеза к кислотам, щелочам и спиртам.

Изменчивость морфологии МБТ

Морфология и размеры МБТ не постоянны, это зависит от возраста клеток и особенно от условий существования и состава питательной среды.

Корд-фактор .

Липиды поверхностной стенки микобактерии определяют ее вирулентность и способность к образованию в культуре скоплений бактерий в виде кос (корд-фактор).

О корд-факторе было сказано еще Кохом в его начальном сообщении относительно МБТ. Первоначально корд-фактор связывали с вирулентностью МБТ. Способность формировать косы наблюдается среди других микобактерии, имеющих низкую вирулентность или вообще не имеющих ее. Корд-фактор, как было установлено позже, связан с необычным биологическим веществом trehalose 6,6-dimycolate, которое обладает высокой вирулентностью.

L -формы.

Одним из важных видов изменчивости МБТ является формирование L-форм. L-формы характеризуются сниженным уровнем метаболизма, ослабленной вирулентностью. Оставаясь жизнеспособными, они могут длительное время находиться в организме и индуцировать противотуберкулезный иммунитет.

L-формы отличаются выраженными функциональными и морфологическими изменениями. Обнаружено, что трансформация МБТ в L-формы усиливается при длительном влиянии антибактериальной терапии и других факторов, которые нарушают их рост и размножение, образование клеточной мембраны.

Установлено, что в мокроте «абациллярных» больных с деструктивными формами туберкулеза могут находиться L -формы МБТ, способные при соответствующих условиях реверсировать (модифицироваться) в палочковидный вариант, вызывая тем самым реактивацию туберкулезного процесса. Следовательно, абациллирование каверн таких больных еще не означает их стерилизацию в отношении МБТ.

МБТ по своей природе нечувствительны ко многим антибиотикам . Это свойство в первую очередь связано с тем, что высокогидрофобная клеточная поверхность служит своего рода физическим барьером для терапевтических агентов и антибиотиков. Главная причина устойчивости закодирована в структуре генома туберкулезной палочки.

Вместе с тем МБТ могут вырабатывать устойчивость (резистентность) к противотуберкулезным препаратам. Одновременная лекарственная устойчивость МБТ к нескольким препаратам в последние годы значительно снижает эффективность лечения туберкулеза.

В результате современное здравоохранение имеет дело не просто с опасным возбудителем туберкулеза, а с целым набором его штаммов, устойчивых к разным лекарствам. На практике для организации эффективного лечения туберкулеза важно не только обнаружить МБТ, но и параллельно определить их резистентность, причем достаточно быстро - в течение двух-трех дней, чтобы вовремя назначить эффективную химиотерапию.

В конце 80-х гг. прошлого века появился метод, значительно сокращающий время такого анализа. Новая диагностика основана на избирательной амплификации нуклеиновых кислот (ДНК или РНК) in vitro с помощью полимеразной цепной реакции (ПЦР).

Метод ПЦР имеет большие возможности и лежит в основе точной ДНК-диагностики, которая позволяет идентифицировать любой штамм МБТ и определять первопричину той или иной устойчивости к лекарствам.

Лабораторные исследования показали, что возникновение резистентности у М. tuberculosis связано с нуклеотидными заменами (мутациями) в генах, кодирующих различные ферменты, которые непосредственно взаимодействуют с лекарственными средствами.

Статьи по теме