Расчет подъемной силы крыла самолета. Расчет аэродинамических характеристик крыла с использованием программного комплекса ANSYS CFX Подбор сечения лонжеронного крыла

0

Министерство образования и науки Российской Федерации

ФГАОУ ВПО ЮУрГУ (НИУ)
Политехнический институт

Аэрокосмический факультет
Кафедра «Летательных Аппаратов»

СЕМЕСТРОВАЯ РАБОТА

по дисциплине «Прочность конструкции» на тему

Расчет на прочность крыла ЛА

Руководитель
Овчинников А.М.
____________________ «___»____________2017 г. Автор работы
студент группы П-424
Иванов С.В.
____________________
« » 2017 г.

Работа защищена с оценкой
____________________ « » 2017 г.

Челябинск, 2017

Аннотация

Иванов М.В. Проектирование силового набора крыла самолета: семестровая работа по дисциплине «Прочность конструкций» - Челябинск: ЮУрГУ, 2017 - 25 с., 19 илл., 2 наименования литературы.

В работе проведен проектный расчет силового набора крыла самолета. Вычислены нагрузки, действующие на конструкцию, определены внутренние силовые факторы: перерезывающая сила, изгибающий момент, крутящий момент.

Проведен проверочный расчет спроектированного крыла в программном пакете Ansys.

Исходные данные. 2

  1. Проектировочный расчет.. 3

1.1 Описание нагрузок. 3

1.2 Расчетная схема конструкции крыла. 7

  1. Подбор сечения лонжеронного крыла.. 8

2.1 Подбор обшивки. 8

2.2 Подбор стрингеров нижней панели. 9

2.3 Расчет силовых элементов крыла на устойчивость. 10

2.4 Подбор поясов лонжеронов верхней панели. 12

2.5 Проверка нижней панели крыла на сжатие. 13

2.6 Подбор толщины стенок лонжеронов. 14

  1. Проверочный расчет.. 16

Исходные данные

В данной работе предлагается провести проектировочный расчет силового подкрепления крыла самолета, а затем выполнить проверочный расчет силового набора с помощью конечно-элементного пакета Ansys.

Принимаются следующие исходные данные для расчета:

1) длина крыла

2) хорда корневой кромки

3) хорда концевой кромки крыла

4) Масса самолета

5) Масса двигателей

7) Координаты подвески двигателей от конца крыла:

8) самолет движется на крейсерской;

9) материал обшивки, поясов лонжеронов, стенок лонжеронов, стрингеров - алюминиевый сплав АМг6: предел прочности модуль упругости

10) Аэродинамический профиль ЦАГИ-734.

Рисунок 1. Профиль крыла ЦАГИ-734.

1. Проектировочный расчет

1.1 Описание нагрузок

На крыло в полете действует распределенная подъемная сила распределенный вес крыла m и сосредоточенные массовые силы агрегатов - веса двигателей

Крыло длиной 8 [м] разбивается на 30 участков длиной [м] каждый. Разбиение показано на рисунке 2.

Подъемная сила на участках крыла и перерезывающая сила определятся по формулам:

Площадь i -го участка крыла; - коэффициент подъемной силы, для выбранного профиля =0,528; - плотность воздуха

Как известно, изгибающий момент определяется через перерезывающую силу следующим образом:

Интегрирование выполним так же, как и при расчете перерезывающей силы, численным методом трапеций. Для участка крыла Δξi определяем приращение изгибающего момента:

Суммируя с нарастающим итогом приращения ΔMi от края крыла, получаем изгибающий момент в сечении:

Крутящий момент определим по формуле:

В таблице 1 приведены расчетные значения.

Таблица 1.

По данным таблицы 1 построим графики изменения перерезывающей силы и моментов.

Рисунок 2. Изменение подъемной силы по длине крыла.

Рисунок 3. Изменение перерезывающей силы по длине крыла.

Рисунок 4. Изменение изгибающего момента по длине крыла

Рисунок 5. Изменение крутящего момента по длине крыла

1.2 Расчетная схема конструкции крыла

При назначении силового набора крыла следует руководствоваться следующими рекомендациями:

1) передний лонжерон располагается на расстоянии от носка сечения, а задний - на, где - хорда сечения крыла;

2) расстояние между соседними стрингерами лежит в пределах от 120...300 мм для лонжеронного крыла;

3) расстояние между нервюрами в лонжеронном крыле обычно принимают 200...300 мм.

Хвостовая часть крыла в дальнейшем не рассматривается, так как она практически не участвует в восприятии основных силовых факторов, действующих на крыло, принимает на себя достаточно малую часть аэродинамического давления в полете, и занята, как правило, механизацией крыла. В некоторых моделях самолетов хвостовую часть подкрепляют сотовым наполнителем. В данной работе хвостовая часть подкреплена одним стрингером, находящимся за задним лонжероном.

Назначение силового набора приведено на рисунке 7.

Рисунок 6. Назначение силового набора крыла.

2. Подбор сечения лонжеронного крыла

Принимается допущение, что расчетный изгибающий момент М изг воспринимается только межлонжеронной частью крыла. В расчетном случае нижняя панель крыла работает на растяжение, а верхняя - на сжатие. Усилие растяжения (или сжатия) панелей будет:

Здесь Н - плечо пары нормальных сил

где μ = 0,95 - коэффициент, показывающий насколько расстояние между центрами тяжести поясов лонжерона меньше габаритной высоты лонжерона; Н1 и Н2 - габаритные высоты лонжеронов. Под Н1 - понимается высота самого высокого лонжерона в сечении крыла.

2.1 Подбор обшивки

Минимальную потребную толщину обшивки рассчитываем из условия работы ее на сдвиг при кручении крыла по формуле

где Ω - удвоенная площадь, охваченная внешним контуром сечения крыла и стенкой заднего лонжерона (без хвостовой части). - разрушающее напряжение обшивки при сдвиге. По потребной толщине обшивки из сортамента алюминиевых листов подбираем ближайшую большую стандартную толщину. Минимальная толщина обшивки будет равна:

1.4.2 Подбор поясов лонжеронов нижней панели.

Минимальную потребную площадь поперечного сечения первого лонжерона находим по формуле

где к = 0,7...0,8 - коэффициент, определяющий долю нормальной силы N, воспринимаемой поясами лонжеронов; - разрушающее напряжение материала растянутого пояса.

Для второго лонжерона принимаем:

По потребным площадям и подбираем ближайшие большие по пло- щади стандартные прессованные профили, . Выбираем профили ПР 101 и ПР 111 - уголкового сечения, не равнополочные (ГОСТ 13738 - 91);

Рисунок 7. Профиль ПР 101.

Для первого лонжерона выбран профиль ПР101-47.

2.2 Подбор стрингеров нижней панели.

Задаёмся количеством стрингеров m, исходя из диапазона рекомендуемых расстояний между ними. Стрингеры в пределах межлонжеронной части крыла располагаем равномерно и находим фактическое расстояние между ними

где В - ширина межлонжеронной части крыла; m - число стрингеров в верхней (нижней) панели крыла.

Вычисляем нормальную силу в поясах лонжеронов

и в обшивке

где - редукционный коэффициент.

Оставшаяся часть растягивающей силы воспринимается стрингерами. Минимальную потребную площадь стрингера вычисляем по формуле

В формулах - разрушающие напряжения при растяжении пояса лонжерона, обшивки и стрингера соответственно.

По потребной величине подбираем стандартный ближайший по площади профиль. Выбираем профиль ПР 100- уголкового сечения, равнополочные (ГОСТ 13737-90);

Рисунок 8. Профиль ПР 100 (ГОСТ 13737-90).

Необходимое условие выполняет профиль ПР100-53.

2.3 Расчет силовых элементов крыла на устойчивость.

Работа обшивки на устойчивость зависит от работы её отдельных участков. Участок обшивки шириной и длиною а (а - расстояние между нервюрами) рассматривается как плоская пластинка, которая опирается по всему контуру на стрингеры и нервюры (рис. Д.1).

Рисунок 9. Фрагмент панели крыла.

Критическое напряжение пластинки при сжатии в направлении стрингерного набора определяют по формуле

где к - коэффициент, учитывающий характер закрепления пластинки по контру. При а ≥ коэффициент к= 4.

Стрингер

Расчет на местную потерю устойчивости

Критическое напряжение местной потери устойчивости для i-той полки стрингера (рис. Д1), рассматриваемой как пластинка шириной bi и толщиной δi, определяется по формуле:

где к= 0,46 - коэффициент для полок стрингера, имеющих один свободный край вдоль длинной стороны;

Введем поправку на пластичность материала:

Расчет на общую потерю устойчивости

Критические напряжения общей потери устойчивости стрингера определяются по формуле

Здесь m - коэффициент, зависящий от характера закрепления стрингера по концам (принято в крыле закрепление стрингера по концам принимать в виде так называемой приторцовки, для которой m = 2); F, Ix - площадь и момент инерции поперечного сечения стрингера относительно оси х, проходящей через центр тяжести стрингера и параллельной обшивке (в приближенном проектировочном расчете); а - расстояние между нервюрами.

Поправка на пластичность материала

Критическое напряжение потери устойчивости стрингера равно минимальному из двух напряжений

2.4 Подбор поясов лонжеронов верхней панели

В верхней сжатой панели стрингерный набор и обшивку принимаем такими же, как и в нижней растянутой. Тогда расчет сжатой зоны сводится к подбору поясов лонжеронов. Вычисляем редукционный коэффициент обшивки при сжатии

Определяем эффективную площадь стрингера и присоединенной к нему обшивки

Требуемые площади сечений поясов лонжеронов рассчитываем по формулам

Здесь σкр - критическое напряжение местной потери устойчивости пояса самого высокого лонжерона. Этой величиной следует сначала задаться в пределах:

По вычисленным площадям подбираем стандартные профили с

По потребным площадям и подбираем ближайшие большие по пло- щади стандартные прессованные профили. Выбираем профили ПР 101 и ПР 111 - уголкового сечения, не равнополочные (ГОСТ 13738 - 91);

Рисунок 10. Профиль ПР 101.

Для первого лонжерона выбран профиль ПР111-40.

2.5 Проверка нижней панели крыла на сжатие

Критические напряжения потери устойчивости поясов первого и второго лонжеронов нижней панели, определятся по формулам

Нижняя панель крыла, подобранная из условия работы её на растяжение в расчетном случае А, будет работать на сжатие в расчетном случае D. Поэтому ее следует проверить на устойчивость по случаю D:

Осевая сила в панели в расчетном случае D.

2.6 Подбор толщины стенок лонжеронов.

В проектировочном расчете принимается допущение, что перерезывающая сила воспринимается только лонжеронами. Между лонжеронами она перераспределяется пропорционально их изгибной жесткости, а в каждом лонжероне она воспринимается, в основном, стенками и частично поясами, если крыло конусное. Тогда расчетные формулы принимают вид:

Где и - расчетные разрушающие значения силовых факторов для случая А; - часть перерезывающей силы, воспринимаемой стенками лонжеронов; - перерезывающая сила, воспринимаемая стенкой первого лонжерона; - перерезывающая сила, воспринимаемая стенкой второго лонжерона; Н= 0,5(Н1 + Н2) - средняя высота лонжеронов в расчетном сечении; - угол сходимости поясов лонжеронов (в радианах)

Касательные напряжения в стенках лонжеронов не должны превышать разрушающих значений. Из этого условия рассчитываем минимальную потребную толщину стенок первого и второго лонжеронов

Подбираем большие ближайшие стандартные значения и. Если при расчете окажется, что стенка заднего лонжерона тоньше обшивки, то следует принять, так как эта стенка входит в контур, воспринимающий крутящий момент. .

3. Проверочный расчет

На основании проведенного проектировочного расчета была построена 3D-модель конструкции крыла с силовым набором (рисунок 11).

Рисунок 11. 3D-модель конструкции крыла с силовым набором.

Проверочный расчет проводится в конечно-элементном пакете Ansys. Конструкция проверяется на прочность статически приложенным давлением, а также, по вычисленным в статическом расчете нагрузкам, проводится проверка на устойчивость.

К указанной части крыла в центре давления прикладывается: перерезывающая сила, изгибающий и крутящий момент:

Силовой набор и обшивка принимается оболочечными элементами Shell 181, каждой поверхности присваивается соответствующая толщина.

По координатам, указанным ранее, созданы элементы сосредоточенный массы (элемент Mass 21). Эти элементы соединены жестко (Rigid Region) с узлами, соответствующими нижним поясам лонжеронов. Эти элементы соответствуют сосредоточенной силе от агрегатов (двигателей).

Крыло считается закрепленным абсолютно жестко во всех направлениях (All DOF) по корневому торцу.

На рисунке 12 приведена конечно-элементная модель с сосредоточенными силами и закрепленной стороной.

Рисунок 12. Конечно-элементная модель для расчета.

На рисунках показан результат расчета напряжений (Nodal solution).

Рисунок 13. Распределение главных растягивающих напряжений.

Рисунок 14. Распределение главных сжимающих напряжений.

Для сравнения приведем расчеты (Element solution)

Рисунок 15. Распределение главных растягивающих напряжений.

Рисунок 16. Распределение главных сжимающих напряжений.

Рисунок 17. Распределение эквивалентных напряжений.

Далее проведен расчет потери устойчивости (Eigen Buckling) с учетом рассчитанных эффектов предварительного нагружения (Pre-Stress Effects). В этом расчете были вычислены первые 5 форм потерь устойчивости конструкции.

Все вычисленные формы потери устойчивости локализованы в растянутой зоне хвостовой части крыла, и отличаются друг от друга количеством возникающих волн. Первая форма потери устойчивости приведена на рисунке 18, пятая - на рисунке 19.

Рисунок 18. Первая форма потери устойчивости.

Рисунок 19. Пятая форма потери устойчивости.

Такая потеря устойчивости обусловлена сдвигом крыла назад по направлению полета, отчего в обшивке возникают касательные напряжения, ведущие к появлению таких волн. Кроме того, в данном расчете обшивка задней части крыла не имеет никакого подкрепления.

Геометрические характеристики силового набора крыла и расчетные напряжения.

Толщина обшивки: ;

Стрингеры: Профиль ПР 100- уголкового сечения, равнополочные (ГОСТ 13737-90);

Рисунок 20. Профиль ПР 100 (ГОСТ 13737-90).

Профиль ПР100-53.

Для второго лонжерона выбран профиль ПР111-38.

Для второго лонжерона выбран профиль ПР101-47.

Численные результаты проверочного расчета:

Проверочные расчеты показали, что спроектированная конструкция неработоспособна, так как:

1) в силовом наборе возникают напряжения, большие предела прочности выбранного материала:

2) происходит потеря устойчивости обшивки (см. рисунки 18, 19).

На основании проверочного расчета сформулированы следующие рекомендации по изменению конструкции:

1) необходимо увеличить площади несущих элементов силового набора, выбрав при этом угловые профили с большей толщиной стенок и меньшей длиной.

2) Увеличить толщину стенок лонжеронов.

3) в проверочных расчетах необходимо учитывать подкрепление хвостовой части (выполняется в виде сотового наполнителя, а также силовых элементов механизации крыла);

4) при проведении конечно-элементного анализа необходимо учитывать эпюры распределения давления по аэродинамическому профилю (в расчете принято постоянное давление по всей нижней части крыла).

Вывод: Результаты ручного расчета не сошлись с расчетами в конечно-элементном пакете Ansys вследствие того, что в ручном расчете не учитывалось взаимодействие составных частей силового набора и отдельно рассчитывались напряжения поясов, стенок и т.д. Проверочный расчет показал, что наибольшие напряжения возникают в месте соединения поясов и стенок лонжеронов.

Список использованной литературы

1) Тарасов, Ю.Л., Лавров, Б.А. Расчет на прочность элементов конструкции самолета [Текст] / Ю.Л. Тарасов, Б.А. Лавров - Самара, Самарский государственный аэрокосмический университет, 2000 г. - 112 с.

2) Мехеда, В.А. Подбор сечений силовых элементов нестреловидных крыльев [Текст] / В. А. Мехеда - Самара, Самарский государственный аэрокосмический университет, 2008 г. - 48 с.

Скачать: У вас нет доступа к скачиванию файлов с нашего сервера.

Размах крыла самолета на этапе проектирования определяется через нагрузку на размах крыла. Дело в том, что летно-технические характеристики ЛА далеко не в последней степени зависят от размаха крыла, а при имеющемся взлетном весе - от нагрузки на размах:

где
G - вес;
- размах крыла.

Теорема Н.Е.Жуковского о подъемной силе крыла, выведенная в 1906 г., выглядит в виде формулы следующим образом :

где
Y - подъемная сила крыла;
- плотность воздуха;
V- скорость полета;
Г- циркуляция скорости.

При анализе развития самолетов в используется зависимость:

,(3)

где
N - мощность двигателя;
- к.п.д. винта.

В случае установившегося горизонтального полета подъемная сила крыла уравновешивается весом ЛА:

С учетом (1) и (4) формулы (2) и (3) предстанут в следующем виде:

Формула (5) показывает существование связи нагрузки на размах с плотностью воздуха и скоростью полета, но из-за сложности определения циркуляции для практических расчетов на этапе проектирования мало пригодна. Формула (6) при своей простоте на практике дает очень большие погрешности, так как исходная зависимость (3) предполагает жесткую связь подъемной силы крыла с индуктивным сопротивлением, а также считается, что полет происходит на уровне земли.

Если исходить, как было сказано выше, из того, что в установившемся горизонтальном полете подъемная сила равна весу (4), а сила сопротивления уравновешена тягой винта:

где
X - сила сопротивления;
P - тяга силовой установки,

то, проведя несложные преобразования (полную выкладку которых опустим ввиду небольшого объема журнальной статьи), получим формулу, позволяющую определить нагрузку на эффективный размах крыла самолета, учитывающую режим полета, степень дросселирования двигателя, к.п.д. винта, скорость и высоту полета в виде следующей зависимости:

,(8)

где
- нагрузка на эффективный размах крыла самолета (кг/м);
- коэффициент режима полета;
- коэффициент дросселирования двигателя;
- расчетная мощность двигателя (л.с.); - плотность воздуха на расчетной высоте полета;
- коэффициент высотности двигателя;
V - скорость полета (км/час).

В свою очередь, коэффициенты выглядят так:

,(9) ,(10)

где
- коэффициент формы крыла в плане;
- коэффициент сопротивления при нулевой подъемной силе;
- коэффициент индуктивного сопротивления;
- действительная мощность двигателя(л.с.);
- номинальная мощность двигателя (л.с.).

При взлетном весе и эффективном размахе крыла нагрузка на эффективный размах:

Потери мощности двигателя при оценке учитываются следующим образом:

,(12)

где
- к.п.д. винта (см.выше);
- к.п.д. редуктора.

На этапе проектирования ЛА коэффициенты Схо и Схi, как правило, неизвестны, но в силу свойств индуктивного сопротивления поляра самолета близка к квадратичной параболе (а расчетная поляра, т.е. полученная не в результате продувок, и является параболой). Для квадратичной параболы верны следующие соотношения (см. рис.1):

Экономический крейсерский режим полета, точка 1;
- режим максимального аэродинамического качества (Кmax), точка 2;
- экономический режим полета, точка 3.

В режиме максимального качества, как известно, обеспечивается наибольшая дальность полета. Экономический режим позволяет достичь максимальной продолжительности полета. Экономический крейсерский режим наиболее приемлем при коммерческих транспортных операциях. Значения коэффициента приведены ниже :

0 - для эллиптического крыла в плане;
= 0,002...0,005 - для крыла с центропланом;
= 0,02...0,08 - для трапециевидного крыла;
= 0,05...0,12 - для прямоугольного крыла.
КПД винта можно принять следующим:
= 0,65...0,75 - для винта фиксированного шага (ВФШ);
= 0,7...0,85 - для винта изменяемого шага (ВИШ).
КПД редуктора лежит в пределах:
= 0,94...,0,96 - для клиноременной передачи;
= 0,97...0,98 - для зубчатой передачи.
При отсутствии редуктора в силовой установке СЛА:
= 1;
= 0,55...0,65.

Мощность двигателя уменьшается с увеличением высоты полета. Коэффициент падения мощности невысотных двигателей , а также значения плотности воздуха в зависимости от высоты полета приведены в таблице 1.

Таблица 1

Коэффициент падения мощности невысотного поршневого двигателя
в зависимости от высоты полета

Коэффициент дросселирования двигателя может изменяться в широком диапазоне и конкретное значение выбирается конструктором.

После того, как по формуле (8), из-за которой, собственно, и пишется эта статья, будет определена нагрузка на эффективный размах, при известном взлетном весе из (11) можно без труда получить величину эффективного размаха:

Нам остается по имеющемуся эффективному размаху определить геометрический размах крыла. Ниже приводятся формулы, позволяющие это сделать для случая классического моноплана. Если у Вас стоит задача проектирования ЛА (или СЛА) другой компоновочной схемы, тогда Вам, уважаемый читатель, следует учесть особенности выбранной Вами схемы. Хотя для первоначальной, грубой прикидки можете воспользоваться данной методикой.

,(14)

где
S - площадь крыла в плане (кв.м);
Si- суммарная в плане площадь, занимаемая подфюзеляжной частью и мотогондолами самолета (кв.м).
В свою очередь:

,(15)

где
- площадь подфюзеляжной части крыла (кв.м);
Si - площадь крыла, занимаемая мотогондолой (кв.м), см. рис.2.

Как показывает статистика слетов СЛА, "конструкторы-самодельщики" в силу технологической простоты чаще применяют прямоугольное в плане крыло.

Для такого крыла формула (14) предстанет в виде:

,(16)

где
- размах крыла, занимаемый подфюзеляжной частью и мотогондолами.
Окончательным решением уравнения (16) будет выражение:

,(17)

которое можно решить с использованием таблиц Брадиса, если у Вас не оказалось под рукой калькулятора. Неплохие результаты дает приближенная зависимость:

,(18)

но необходимо помнить, что эту формулу допустимо использовать только на самом первоначальном этапе, так называемом "этапе нулевого приближения".

В случае, если форма крыла отличается от прямоугольной, решение зависимости (14) представляет определенные трудности, которых на практике можно избежать лишь применением вычислительной техники. При невозможности привлечь к работе компьютер (отсутствие самого компьютера или соответствующего программного обеспечения) можно воспользоваться формулой (17) или (18), а затем методом последовательных приближений определять геометрический размах крыла с использованием формулы (14), на каждом шаге уточняя Si. Касаясь вопроса приближений, по праву самого "маститого" специалиста в области формулы (8), рекомендую использовать ее как проектировочную, с последующим уточнением размаха по результатам продувок или проверочных расчетов для ЛА взлетным весом более 500...600 кг. Для ЛА взлетным весом менее 500 кг эта формула может оказаться единственным способом определения размаха крыла, поскольку методики проектирования крыла, изложенные в книгах "Проектирование самолетов" Н.А.Фомина или С.М.Егера, по своей трудоемкости соизмеримы с трудозатратами по изготовлению СЛА (и, как правило, "не по зубам" самодельщику-одиночке).

На этом, уважаемый читатель, заканчиваем описание самой формулы (8), а также необходимых для ее использования дополнений, и теперь, по уже сложившейся традиции, рассмотрим пример. Данные для расчета см. в табл. 2.

Таблица 2

Параметр

Размерность

Самолет №1

Самолет №2

Сам расчет с пояснениями приведен в табл. 3.

Таблица 3

Параметр

Размерность

Самолет№1

Самолет №2

Примечание

Крейсерский режим

по формуле (9)

по формуле (12)

по формуле (8)

по формуле (13)

по формуле (14)

Полученные результаты расчета сравним с реально существовавшими машинами в табл. 4.

Таблица 4

Исходные данные для расчета (табл. 2) взяты из и для АНТ-37 и ЦКБ-26 соответственно. Следует сообщить, что эти самолеты участвовали в конкурсе ВВС РККА 1936 г. на дальний бомбардировщик, оба были оборудованы ВФШ и имели по два невысотных двигателя М-85, и для своего времени являлись довольно передовой техникой.

Из личного опыта общения с "самодельщиками" знаю, что многие из них любят читать журналы и другие публикации, зачастую с целью обнаружить какое-либо уже готовое к применению техническое решение, поэтому следует привести в табл. 5 заключительный пример, к тому же учитывающий специфику журнала "АОН".


РАСЧЕТ САХ КРЫЛА С КРИВОЛИНЕЙНЫМ КОНТУРОМ

Юрий Арзуманян (yuri _ la )

Прежде, чем решать задачу, надо понимать, что будешь делать с результатом.

Задачу можно решать двумя путями: можно с интегралами, а можно с дробями. Результат один и тот же, но с дробями проще…

Введение

Задача расчета САХ (Средней Аэродинамической Хорды) крыла возникает в практике авиамоделиста довольно часто. Существует ГОСТ 22833-77, в котором дано определение САХ и приведена общая формула для ее расчета. Правда, ГОСТ не объясняет, почему используется именно эта формула, и как ею реально пользоваться. Однако, в подавляющем большинстве случаев, когда рассматривается крыло простой формы в плане, с прямыми кромками, то есть трапециевидное, треугольное и т.п., необходимости вдаваться в математику нет никакой. Когда не было компьютеров, САХ определяли графическим методом. В качестве методических пособий использовались даже специальные плакаты, которые красовались на стенах авиамодельных секций и кружков.

Рис. 1. Учебный плакат-пособие

Сейчас существуют простые модельные калькуляторы (программы), которые можно установить на компьютер, или пользоваться ими онлайн. На RC - Aviation , например, доступен .

В нем, правда, отсутствует возможность расчета САХ крыла с криволинейным контуром. А иногда именно это и нужно. Вот, например, популярный у начинающих «Дракоша» (в данном случае Wing Dragon 500) от Art - Tech (Рис. 2). Его крыло имеет небольшую стреловидность по передней кромке у корневой нервюры, а дальше скругление к законцовке.


Рис. 2. «Дракоша»

Возможно, существуют более серьезные компьютерные программы, чем упомянутые мной простые модельные калькуляторы, которые, если есть введенное в компьютер графическое изображение контура крыла (проекции), обеспечивают такую возможность даже при отсутствии формул для кривизны кромки. Ну, а если у вас такого контура еще нет? Вы еще только прорисовываете контур крыла и хотите прикинуть разные варианты?

Поэтому целью данной статьи я ставил не только вывод конечных формул для расчета САХ такого крыла, но и раскрытие общего алгоритма расчета. Иными словами, хотелось показать, КАК это делается для понимания полученного результата.

Я предлагаю лишь один из возможных подходов к аппроксимации криволинейного контура с использованием кривых Безье , но этот метод не единственно возможный. Стоит заметить, что я попробовал разные методы. В частности, напрашивающийся метод с помощью сплайн-аппроксимации, с помощью степенных функций и др. Эти методы меня не устроили либо из-за сильного искажения контура крыла при определенном сочетании исходных данных, либо из-за своей громоздкости и вычислительной трудоемкости. Метод с использованием квадратичных кривых Безье показался мне наиболее приемлемым для тех условий и набора исходных данных, которые может иметь авиамоделист при обмере готовой модели или проектировании собственной. Повторюсь, что он применим как раз тогда, когда уравнение кривой, описывающей криволинейный контур, неизвестно. Может быть кто-то, прочитав данную статью, предложит лучший метод аппроксимации, но я пока остановился на этом.

Немного теории

Средней аэродинамической хордой принято считать хорду эквивалентного прямоугольного крыла, в идеале обладающего аналогичными аэродинамическими характеристиками, как и исходное. И положение центра тяжести самолета (ЦТ) в аэродинамике и динамике полета принято отсчитывать в процентах от САХ . Это позволяет уйти от всего многообразия форм крыла в плане и привести его к «общему знаменателю». Наконец, это просто удобно в практическом плане.

Итак, речь у нас идет о крыле самолета, а оно предназначено для создания подъемной силы, которая возникает за счет взаимодействия воздушного потока с крылом. Характер этого взаимодействия очень сложный, и в механизм создания подъемной силы крыла мы здесь вдаваться не будем, так же, как и не будем учитывать другие несущие элементы конструкции, хотя полученные выводы применимы и для другой несущей плоскости. Отметим только следующие моменты:

- Подъемная сила крыла создается всей его поверхностью, то есть она является распределенной , а не точечной аэродинамической нагрузкой;

- Распределение этой нагрузки по всей поверхности крыла неравномерно , как вдоль хорды, так и по размаху. Оно зависит от многих факторов, таких как форма крыла в плане, профиль (форма нервюр), крутка крыла, интерференция крыла и фюзеляжа, концевой вихрь, шероховатость поверхности, скорость и высота полета, угол атаки и т.д. и т.п.

На деле учесть теоретически все перечисленные факторы вряд ли возможно, тем более на стадии проектирования, когда и самолета-то еще нет. Однако поскольку САХ является условной опорной величиной, то целесообразно отбросить весь этот набор искажающих картину факторов, и принять одно глобальное допущение о том, что крыло является как бы плоским, и аэродинамическая нагрузка распределена по всей его площади равномерно . Тогда вычисление САХ становится возможным в аналитическом виде, то есть с помощью формул.

В механике принято в необходимых случаях заменять распределенную нагрузку равнодействующей силой, приложенной в той точке нагруженной поверхности, в которой такое воздействие точечной силы создаст эквивалентное нагружение тела. А САХ нам и нужна для того, чтобы определить то место на крыле, в котором и была бы приложена эта самая воображаемая равнодействующая аэродинамическая сила. Чтобы найти это место, нам надо вычислить расстояние до него от оси симметрии крыла (плечо САХ ), и саму величину САХ , поскольку она является хордой эквивалентного прямоугольного крыла, центр давления которого (та самая равнодействующая) приложена точно в середине хорды.

Вот к этому мы и приступим.

Метод расчета

На следующем рисунке показан вид вдоль продольной оси самолета на прямое плоское крыло. Продольная ось в системе координат самолета обозначена X , вертикальная Y , а поперечная (вдоль размаха крыла) – Z .

При проведении расчетов все силы и моменты, действующие на летательный аппарат, проецируют на оси или базовые плоскости выбранной системы координат . Система координат выбирается под задачу. В нашем случае это связанная система координат. О проекциях на базовые плоскости будет сказано ниже, пока же мы рассмотрим крыло простой формы, лежащее в базовой плоскости O XZ .


Рис. 3. Нагружение крыла

На правой консоли крыла показана распределенная аэродинамическая нагрузка с интенсивностью q . Размерность ее – сила, деленная на площадь, то есть давление. На левой консоли показана эквивалентная сосредоточенная сила Yk , которая приложена в точке, удаленной от оси на расстояние (плечо) Lcax . В результате эквивалентности такого нагружения крыло находится в равновесии, то есть сумма моментов относительно оси Х (начала координат) равна нулю.

Тогда в левой части уравнения момент можно записать как произведение Yk на Lcax , а в правой – брать бесконечно малую элементарную площадку, умножать ее площадь dS на интенсивность нагружения q , и на расстояние от этой элементарной площадки до оси, то есть координату z . Таких элементарных площадок будет бесконечное множество, и чтобы все это не суммировать, надо взять обыкновенный интеграл по площади. Собственно говоря, именно этот интеграл и записан в определении САХ в вышеупомянутом ГОСТе.

Таким образом, уравнение равновесия можно записать так:

Но поскольку Yk представляет собой силу, «собранную» со всей площади консоли крыла, то получить ее можно, просто помножив интенсивность аэродинамической нагрузки q на всю площадь консоли S . Тогда q в левой и правой части уравнения сократится, и в нем останутся только геометрические параметры.

В свою очередь площадь элементарной площадки dS можно вычислить, как это принято в математике, как площадь бесконечно малого элементарного прямоугольника с высотой, равной значению функции x = f ( z ) на координате z , умноженную на длину основания этого прямоугольника dz . Для наглядности это показано на Рис. 4.


Рис. 4. Консоль крыла в плане

Тогда уравнение равновесия можно переписать так:

Здесь L – полуразмах крыла.

Подынтегральное выражение называется статическим моментом площади . В этом выражении нам неизвестен вид уравнения x = f ( z ) . Кроме того, нам неизвестна площадь консоли S . Если бы контур крыла был образован прямыми линиями, то мы бы имели простое уравнение прямой, а площадь бы вычислялась, как площадь простой геометрической фигуры (трапеция, треугольник, параллелограмм и т.п.). Тогда взятие интеграла не составляло бы труда и, соответственно, получение искомого Lcax . Отсюда следующим шагом стало бы вычисление искомого значения САХ :

САХ = f ( Lcax )

Так вот, модельные калькуляторы САХ именно этими формулами и пользуются. Прежде чем продолжить наши выводы, я сразу эти формулы здесь и приведу, чтобы они были у вас при случае под рукой.

L cax = L[(H + 2h)/(H + h)]/3

САХ = H – ( H h ) Lcax / L

Если известна аналитическая формула, описывающая контур крыла, то таким способом можно вычислить САХ для более сложных крыльев в плане. Например, для эллиптического крыла (правильный эллипс, а не «примерно» эллипс).

Или приближенно L cax = 0,212 L ; САХ = 0,905 H . Кстати, на Рис. 1 крайне правое в верхнем ряду как раз показано эллиптическое крыло, и приведено значение САХ . Только там L это размах крыла, а здесь оно обозначено как полуразмах. Поэтому величины совпадают. Если крыло представляет собой круг, то формулы также справедливы при подстановке H = L = R , где R – радиус круга.

Но у нас контур крыла не описывается аналитической формулой, которую можно так же легко проинтегрировать. Во всяком случае, вид этой формулы нам неизвестен, и нам нужно подобрать необходимое уравнение, описывающее этот контур.

Вывод формул

Читатели, не знакомые с интегральным и дифференциальным исчислением, могут этот раздел пропустить.

Итак, я выбрал кривую Безье, а выражение для квадратичной кривой Безье записывается в параметрической форме так:

Здесь t – параметр, принадлежащий интервалу

На самом деле, при параметрической форме задания кривой на плоскости приведенное выше выражение объединяет в себе два уравнения, каждое для своей оси выбранной системы координат. Коэффициенты – опорные точки кривой – как раз и обозначают значения коэффициентов для каждой оси, что мы увидим ниже.

Начальная и конечная точки у нас имеют следующие координаты:

Координаты средней точки нам неизвестны и их предстоит определить. Подставив значения координат опорных точек, мы получим два параметрических уравнения на плоскости.

В дальнейших выкладках нам индексы не понадобятся, так как неизвестная точка всего одна. Поэтому я их пока опущу.

Так какую точку выбрать в качестве неизвестной средней опорной точки? Я предположил, что углы стреловидности у корневой и концевой нервюры w и u (Рис. 4) нам известны (замерены на реальном крыле), либо мы их зададим сами, если крыла еще нет. Тогда ее координаты будут координатами точки пересечения касательных к контуру, проведенных из начальной и конечной точек (Рис. 5). Заметьте, что оба угла стреловидности w и u здесь имеют отрицательные значения, поскольку в математике принято за положительное направление отсчета углов считать направление против часовой стрелки.


Рис. 5. К определению координат средней опорной точки

Значения этих координат следующие:

Здесь, правда, есть одно ограничение . Если у законцовки кривая контура крыла круто загибается и угол u приближается к девяноста градусам, то tg ( u ) обратится в бесконечность. Как ни странно, но в этом случае ситуация проще. Надо просто положить z = L . Вторая формула – без изменений. Такой контур крыла с круто загибающейся задней кромкой показан на Рис. 6.

Теперь мы можем использовать полученные выражения для вычисления интегралов. Однако в уравнении для Lcax неизвестной является и площадь крыла S , поэтому придется вычислить два интеграла: один для площади, другой для статического момента. Интеграл для площади, при задании кривых в параметрической форме, запишется так:

Здесь

Вычисление таких интегралов трудностей не представляет, это просто трудоемкая рутинная процедура, поэтому выкладки я приводить не буду, чтобы не утомлять читателя. Результирующая формула:

Теперь надо найти Lcax . Формула для вычисления:

Снова длинная рутинная процедура перемножения многочленов и взятие интегралов. Выкладки опускаю, результат таков:

Желающие могут меня перепроверить самостоятельно.

Для круто скругленной кромки, в данном случае задней, как на Рис. 6, то есть при z = L , формулы упрощаются.

Итак, плечо САХ мы нашли. Но эта величина у нас отсчитывается по оси Z . А теперь надо найти саму САХ , которая у нас измеряется по оси X . Поскольку x у нас задается параметрическим уравнением, то надо найти значение параметра t , которому соответствует Lcax . Подставляя Lcax в уравнение для z ( t ) , и решая его относительно t , получим следующую формулу:

Теперь находим собственно САХ .

Задача решена! Для получения результата нам понадобились всего четыре формулы. При этом одна из них «попутно» дала нам площадь консоли!

Числовой пример

Возьмем такое крыло, как на Рис. 5. Исходные данные для него следующие:

Полуразмах L = 5 дм; корневая хорда Н = 3 дм; концевая хорда h = 1 дм; угол стреловидности у корневой нервюры w = -3 градуса; угол стреловидности у концевой нервюры u = -45 градусов.

Точка пересечения касательных дает те самые координаты третьей опорной точки для параметрических уравнений кривой, описывающих переднюю кромку крыла. Напоминаю, что в расчетных формулах индекс опущен.

В нашем случае: дм; дм.

Вычислим площадь консоли и Lcax :

S = 11,674 кв . дм ; Lcax = 2,162 дм .

И теперь уже собственно CAX = 2,604 дм

Положение САХ на графике показано вертикальной линией.

Что ж, задачу мы решили. И самое главное, что интегралы мы свели к дробям… А ведь с дробями проще!

Но это еще не конец истории. Что если у нас и задняя кромка криволинейная? И если «криволинейность» ее другая? Смотрим на картинку Рис. 6.


Рис. 6. Пример крыла с криволинейными передней и задней кромками

Сразу отмечу, что ничего сложного в этой задаче нет. У нас уже есть весь набор инструментов для ее решения. Крыло у нас разбито на две секции: выше оси Z и ниже ее. Я специально выбрал крутое скругление задней кромки, чтобы продемонстрировать возможность оперирования с произвольным контуром крыла.

Итак, для верхней (передней) секции крыла мы уже знаем что делать, для нижней (задней) поступаем точно также. Особенность будет заключаться лишь в том, что для нее значения H и h будут отрицательными, поскольку они лежат ниже оси абсцисс, а углы стреловидности положительными. Так что проводим вычисления еще раз с новыми значениями, и получаем параметры для нижней секции крыла. Вот только площадь сегмента получится отрицательной! Конечно, в реальности этого быть не может, это просто мы так «неудачно» выбрали оси координат. Учтем это обстоятельство при вычислении площади консоли.

Что делать дальше? Мы имеем две секции, которым присвоим индексы в – для верхней (передней) и н – для нижней (задней). С учетом знаков, суммарная площадь консоли S равна:

Также мы имеем Lcax . Теперь нужно вычислить Lcax для всей консоли по следующей формуле.

Тогда для верхней секции:

Соответственно для нижней:

Здесь опять координата получится отрицательной. Поэтому окончательно САХ вычисляется по формуле:

Пример

Продолжим приведенный выше пример (Рис. 6) со следующими значениями исходных величин для нижней секции консоли. Верхняя секция без изменений.

Корневая хорда Н = -3 дм; концевая хорда h = 0 дм

Угол стреловидности у корневой нервюры w = 0 градусов; у концевой u = 90 градусов.

Получим:

И, окончательно:

САХ = 5,591 дм

На Рис. 6 показаны САХ для верхней и нижней секций консоли. Результирующую САХ я не показал, поскольку она близка к этим двум и на рисунке будет сливаться. Все вычисления удобно проводить в Excel и сразу строить графики контура. Это наглядно покажет, похож ли ваш контур на желаемый, и при случае выявит ошибку в вычислениях.

Заключение

Обратите внимание, что попутно мы в принципе решили задачку вычисления САХ для многосекционного крыла. Ведь разбиение крыла на участки – это и есть аналог многосекционного крыла, у которого, например, резко меняется контур центроплана, консоли или законцовки. Только угол сопряжения кривых в стыке участков будет разный. Есть и другие особенности в расчете, если секции крыла расположены не вдоль хорды, а вдоль размаха.

Далее, необходимо учитывать, что если ваше крыло имеет поперечное V , при этом излом крыла всего один, (верхние конфигурации крыла на плакате Рис. 1), то выведенные выше формулы остаются справедливыми при расчете САХ . Если же крыло имеет два и более излома (нижние конфигурации крыла на плакате Рис. 1), то при расчете САХ придется переходить к проекциям крыла на базовые плоскости.

Но подробнее обо всем этом в другой раз…

Расчет аэродинамических характеристик крыла с использованием программного комплекса ANSYS CFX

Создание летательного аппарата нового поколения невозможно без анализа его аэродинамических характеристик еще на ранних стадиях проектирования. От глубины исследования формы несущих поверхностей и обводов планера напрямую зависят летно-технические характеристики разрабатываемого самолета. Развитие теоретических основ численных методик расчета аэродинамических характеристик летательных аппаратов можно разделить на несколько этапов:

  • линейная теория (60-е годы);
  • нелинейная теория полного потенциала скорости (70-е годы);
  • уравнения Эйлера (80-е годы);
  • уравнения Навье — Стокса, осредненные по Рейнольдсу (90-е годы).

Физику процесса обтекания тела произвольной формы потоком газа наилучшим образом отражают методики, основанные на решениях уравнений Навье — Стокса. С появлением программных средств, базирующихся на численных решениях уравнений Навье — Стокса, стало возможно получить расчетным путем ряд важных аэродинамических характеристик самолета, в частности вычислить максимальное значение коэффициента подъемной силы Cy max . При расчетах аэродинамических характеристик объектов сложной пространственной конфигурации с использованием такого подхода требуются большие объемы оперативной памяти компьютера, поскольку допустимые размеры расчетной сетки пропорциональны объему оперативной памяти компьютера. Рост возможностей вычислительной техники, наблюдаемый в последние годы, позволяет применять программы, основанные на численных решениях уравнений Навье — Стокса, для расчета характеристик обтекания таких объектов, как самолет. Одной из популярных коммерческих программ в этой области является ANSYS CFX (лицензия ЦАГИ № 501024).

Использование CFX в области авиастроения является рациональным, поскольку пакет ANSYS, помимо аэродинамического модуля CFX, содержит ряд других вычислительных модулей (STRUCTURAL, FATIQUE и д.р.), что обеспечивает возможность совместного решения задач аэродинамики, аэроупругости и прочности.

Рассмотрим особенности расчета обтекания прямого крыла бесконечного размаха с профилем GA(W)-1. Этот профиль был создан известным американским аэродинамиком Уиткомбом для применения на дозвуковых скоростях полета.

Комплекс ANSYS оснащен встроенными интерфейсами ряда основных CAD-программ. Геометрическая модель, созданная в программе трехмерного графического моделирования, считывается любой из программ комплекса. Твердотельная геометрическая модель отсека крыла, сохраненная в формате Parasolid, была импортирована в профессиональный сеточный генератор ANSYS ICEM, где методом Octree была построена неструктурированная расчетная сетка, состоящая из 3 млн объемных тетраэдрических элементов (рис. 1). Вблизи поверхности крыла параметры Tetra Size Ratio и Height Ratio были равны 1.2. Максимальный размер элементов на передней кромке крыла составил 1 мм. Для обеспечения нужной точности решения и сходимости расчета элементы расчетной сетки имели Aspect Ratio более 0.3 и Min Angle более 20°. Кроме того, необходимо, чтобы габаритные размеры расчетной области многократно превышали характерный размер исследуемого объекта. В данном случае использовалась прямоугольная расчетная область длиной 35 и высотой 30 м. Размах крыла равен 4 м, а хорда крыла — 3,3 м. Моделирование крыла бесконечного размаха осуществлялось путем задания в препроцессоре CFX-PRE справа и слева от крыла граничных условий типа Symmetry. Типы граничных условий, используемых в данной задаче, показаны на рис. 2.

В пристеночных областях при построении расчетной сетки для наилучшего моделирования пограничного слоя образованы слои призматических элементов (см. рис. 1). При решении задачи обтекания крыла (где одной из расчетных величин является касательное напряжение) очень важно контролировать величину Y+ . Значение Y+ характеризует относительную высоту первой ячейки пограничного слоя, которая задается в ICEM при построении призматических элементов. После окончания вычислений в среде постпроцессора CFX-POST можно визуализировать Y+ на расчетной модели (рис. 3).

При использовании методик, основанных на численных решениях уравнений Навье — Стокса, качество полученного результата во многом зависит от выбора модели турбулентности. В программном комплексе ANSYS CFX реализовано достаточно большое число моделей турбулентности. Однако ни одна из них не является универсальной для всех существующих классов задач. Из многообразия моделей турбулентности, используемых при расчетах аэродинамических характеристик, можно выделить известные модели турбулентности k -ε и k -ω. Они являются двупараметрическими моделями турбулентности, которые базируются на рассмотрении кинетической энергии турбулентных пульсаций k . В качестве второго уравнения применяют уравнение либо переноса скорости диссипации турбулентной энергии ε, либо удельной скорости диссипации энергии ω. Модель переноса касательных напряжений SST (двухслойная модель Ментера) использует модель k -ω в пристеночной области и преобразованную модель k -ε вдали от стенки. В новые версии программы CFX включен бета-вариант модели турбулентности Spalart-Allmaras (S-A). Эта модель является однопараметрической, использующей одно дифференциальное уравнение переноса.

Расчеты с применением программного комплекса ANSYS CFX проводились на сервере с 8-ядерным процессором Intel Xeon 2,83 ГГц и 16 Гбайт ОЗУ. Для получения стационарного решения в зависимости от типа модели турбулентности и угла атаки крыла потребовалось осуществить 40-60 итераций.

Вычисления проводились при числе Маха 0,2 и числе Рейнольдса 2,2Ѕ106. В препроцессоре ANSYS CFX отсутствует возможность напрямую задавать число Рейнольдса. В связи с этим число Рейнольдса вычислялось в CFX-PRE по величине статического давления, соответствующего определенному коэффициенту кинематической вязкости.

В результате проведенных расчетов были получены величины сил и моментов, действующих на отсек крыла на заданных углах атаки. Зависимость коэффициента подъемной силы Сy от угла атаки сравнивалась с аналогичными экспериментальными данными, полученными американскими специалистами NASA Венцем и Ситхарамом (SAE Paper 740365). На линейном участке все рассмотренные модели турбулентности продемонстрировали удовлетворительное совпадение расчетных и экспериментальных данных. В зоне Сy max максимальное соответствие с экспериментальными данными показала модель турбулентности SST (рис. 4). С использованием постпроцессора CFX-POST файл с результатами расчета позволяет визуализировать картину обтекания крыла. Линии тока и поле скоростей хорошо иллюстрируют отрывное течение, соответствующее углу атаки, при котором достигается Cy max крыла (рис. 5).

Таким образом, в результате выполненной работы показано, что при расчетах характеристик обтекания аэродинамических поверхностей использование модели турбулентности SST приводит к более высокому результату.

Прежде чем рассматривать, что же такое подъемная сила крыла самолета и как ее рассчитать, мы представим, что авиалайнер – это материальная точка, которая осуществляет движение по определенной траектории. Для смены этого направления либо силы движения необходимо ускорение. Оно бывает двух видов: нормальное и тангенциальное. Первое стремится поменять направление движения, а второе оказывает влияние на скорость движения точки. Если говорить о самолете, то его ускорение создается за счет подъемной силы крана. Рассмотрим конкретнее это понятие.

Подъемная сила входит в состав аэродинамической силы. Она резко возрастает, когда меняется угол атаки. Таким образом, маневренность воздушного судна заложена непосредственно в подъемной силе.

Расчет подъемной силы крыла самолета выполняется при помощи специальной формулы: Y= 0.5 ∙ Cy ∙ p ∙ V ∙ 2∙ S.

  1. Cy – это коэффициент подъемной силы крыла самолета.
  2. S – площадь крыла.
  3. Р – плотность воздуха.
  4. V – скорость потока.

Аэродинамика крыла самолета, которая оказывает влияние на него при полете, вычисляется таким выражением:

F= c ∙ q ∙ S, где:

  • C – это коэффициент формы;
  • S – площадь;
  • q – скоростной напор.

Следует отметить, что кроме крыла, подъемная сила создается при помощи других составляющих, а именно хвостового горизонтального оперения.

Те, кто интересуются авиацией, в частности ее историей, знают, что впервые самолет взлетел в 1903 году. Многих интересует вопрос: почему это случилось так поздно? По каким причинам это не случилось раньше? Все дело в том, что ученые на протяжении долгого времени недоумевали, каким образом высчитать подъемную силу и определить размер и форму крыла воздушного судна.

Если брать закон Ньютона, то подъемная сила пропорциональна углу атаки во второй степени. Из-за этого многие ученые считали, что невозможно изобрести крыло самолета малого размаха, но при этом с хорошими характеристиками. Лишь в конце IXX века братья Райт решили создать конструкцию небольшого размаха с нормальной силой подъема.

Центровка самолета

Что влияет на поднятие самолета в воздух?

Очень многие люди боятся летать на самолетах, потому что не знают, как он летает, от чего зависит его скорость, на какую высоту он поднимается и многое другое. Изучив это, некоторые меняют свое мнение. Каким же образом самолет поднимается вверх? Давайте разбираться.

Присмотревшись к крылу воздушного судна, можно увидеть, что оно не плоское. Нижняя часть гладкая, а верхняя – выпуклая. Благодаря этому, когда увеличивается скорость самолета, изменяется давление воздуха на его крыло. Так как внизу скорость потока небольшая, давление увеличивается. А поскольку вверху скорость увеличивается, давление уменьшается. За счет таких изменений самолет тянется вверх. Такая разница носит название подъемная сила крыла самолета. Этот принцип сформулировал Николай Жуковский в начале 20 века. При начальных попытках отправить судно в воздух применялся данный принцип Жуковского. Нынешние судна осуществляют полет со скоростью 180-250 км/ч.

Скорость лайнера при взлете

Когда лайнер набирает скорость, он непосредственно поднимается вверх. Скорость отрыва бывает разной, она зависит от габаритов самолета. Еще немаловажное влияние оказывает конфигурация его крыльев. Например, знаменитый ТУ-154 летает со скоростью 215 км/ч, а Boeing 747-270 км/ч. Чуть меньше скорость полета у Airbus A 380-267 км/ч .

Если брать средние данные, то сегодняшние лайнеры осуществляют полет со скоростью 230-240 км/ч. Однако скорость может меняться из-за ускорения ветра, массы лайнера, погоды, взлетной полосы и других факторов.

Скорость при посадке

Следует отметить, что посадочная скорость тоже непостоянна, как и взлетная. Она может меняться в зависимости от того, какая модель авиалайнера, какая площадь его, направление ветра и т. п. Но если брать средние данные, то самолет приземляется со средней скоростью 220-240 км/ч . Примечательно, что скорость в воздухе вычисляется относительно воздуха, а не земли.

Высота полета самолета

Многих интересует вопрос: какая высота полета авиалайнеров? Надо сказать, что и в этом случае конкретных данных нет. Высота может быть разной. Если же брать средние показатели, то пассажирские лайнеры летают на высоте 5-10 тыс. метров. Крупные пассажирские самолеты летают с большей высотой - 9-13 тыс. метров. Если самолет набирает высоту выше 12 тыс. метров, то он начинает проваливаться. Из-за того, что воздух разреженный, отсутствует нормальная сила подъема и имеется недостаток кислорода. Именно поэтому не стоит взлетать так высоко, поскольку есть угроза авиакатастрофы. Зачастую самолеты выше 9 тыс. метров не поднимаются. Примечательно, что и чересчур низкая высота негативно сказывается на полете. Например, ниже 5 тыс. метров нельзя летать, так как есть угроза недостатка кислорода, в результате чего снижается мощность двигателей.

Что может стать причиной отмены полета самолета?

  • низкая видимость, когда нет никакой гарантии, что пилот сможет посадить самолет в нужном месте. В таком случае лайнер может просто не увидеть взлетно-посадочную полосу, из-за чего может возникнуть авария;
  • техническое состояние аэропорта. Бывает, что какие-то оборудования в аэропорту перестали работать или случились неполадки в работе той или иной системы, из-за чего рейс может быть перенесен на другое время;
  • состояние самого пилота. Неоднократно случалось такое, что пилот не мог управлять рейсом в нужный момент и появлялась надобность в замене. Ни для кого не секрет, что в лайнере всегда два пилота. Именно поэтому необходимо определенное время, чтобы найти второго пилота. Таким образом, рейс может немного задержаться.

Лишь при полной подготовке и при благоприятных метеорологических условиях можно отправлять воздушное судно в полет. Решение об отправке принимает командир самолета. Он несет полную ответственность за то, чтобы самолет благополучно осуществил авиарейс.

Вконтакте

Статьи по теме