Что такое биполярный транзистор и как его проверить. Биполярный транзистор- подробное описание всех параметров полупроводника

– один из двух основных видов транзисторов, изготавливается в виде трёхэлектродного полупроводникового прибора. В каждом из этих проводников имеются последовательно расположенные слои обладающие n-проводимостью (примесной) или p-проводимостью (дырочной). Таким образом, формируются биполярные транзисторы n-p-n или p-n-p типов.

Три электрода в биполярном транзисторе подключены соответственно к каждому из трёх проводящих слоёв.

В момент работы биполярного транзистора происходит одновременная передача разнотипных зарядов, переносимых электронами и дырками. То есть всего задействовано два типа зарядов, потому этот транзистор и носит название «биполярный» («би» означает «два).

Рис.1: Устройство биполярного транзистора.

Соединённый со средним слоем электрод обозначается как «база». Два крайних электрода именуются «коллектор» и «эмиттер». По типу проводимости два этих канала одинаковы. Однако, с целью получения устройства с необходимыми характеристиками, слой, соединённый с эмиттером, делают более легированными примесями, а соединённый с коллектором – наоборот. Как результат, допустимое коллекторное напряжение увеличивается. Учёт уровня обратного напряжения, при котором происходит пробой эмиттерного перехода, не столь важен, поскольку для сборки электронной схемы обычно применяют модели с прямым смещением по эмиттерному p-n-переходу, что превращает схему практически в проводник. Помимо прочего, легированный эмиттерный слой облегчает переход неосновных носителей в центральный проводящий слой, способствуя увеличению коэффициента преобразования по току в схеме с ОБ (общей базой).

Также, в модифицированной конструкции коллекторный p-n-переход по размерам значительно превосходит эмиттерный. Данный параметр обусловлен необходимостью улучшения сбора неосновных носителей, поступающих из слоя базы, и подъёма коэффициента передачи.

Быстродействие биполярных транзисторов зависит от толщины базового слоя: чем он толще, тем медленнее функционирует вся схема. Но крайне истончать этот слой тоже нельзя. При уменьшении толщины уменьшается и временной отрезок, требующийся для прохождения неосновных носителей через тело базового слоя, но вместе с тем происходит значительное уменьшение предельного коллекторного напряжения. Поэтому подбор правильного размера базы осуществляется с учётом обоих этих явлений.

Устройство и принцип действия

Рис.2: Планарный биполярный n-p-n транзистор в поперечном разрезе

Самые первые модели биполярных транзисторов выполнялись с применением металлического германия (полупроводниковый материал). На данный момент для этих целей используется монокристаллический кремний и монокристаллический арсенид галлия.

Рис.3: Монокристаллы кремния и арсенида галлия

Наиболее быстродействующими устройствами являются те, в которых задействован арсенид галлия. По этой причине их наиболее часто применяют как элементы сверхбыстродействующих логических схем и схем сверхвысокочастотных усилителей.

Как уже говорилось выше, структура биполярного транзистора складывается из эмиттерного, базового и коллекторного слоёв с различным уровнем легированности, и каждый слой соединён со своим электродом, представленный омическим (невыпрямляющим) контактом.

Слаболегированный базовый слой транзистора отличается большим уровнем омического сопротивления.

При соотнесении контактов эмиттер-база и коллектор-база можно отметить, что первый уступает по размерам второму.

Подобная конструкция обусловлена следующими моментами:

  • Большой коллекторно-базовый переход позволяет увеличить количество передаваемых от базы к коллектору неосновных носителей заряда (ННЗ);
  • На момент активной работы К-Б-переход функционирует в условиях обратного смещения, что вызывает сильное тепловыделение в зоне коллекторного перехода, поэтому, чтобы улучшить его теплоотводность приходится увеличивать площадь.

Таким образом «идеальный» симметричный биполярный транзистор фигурирует только в теоретических выкладках, а перенос теорию на практическую базу демонстрирует, что наибольшим КПД обладают именно те модели, которые не обладают симметрией.

В режиме активного усиления в транзисторе происходит прямое смещение Э-перехода (он становится открытым), и обратное смещение К-перехода (он становится закрытым). В противоположной ситуации, при закрытии Э-перехода и открытии К-перехода происходит инверсное включение биполярного транзистора.

Если подробнее рассматривать процесс функционирования транзисторов n-p-n типа, то в первую очередь наблюдается переход основных НЗ (носителей заряда) из эмиттерного слоя по Э-Б-переходу в базовый слой. Часть НЗ, представленных электронами взаимодействует с дырками базы, что приводит к нейтрализации обоих зарядов и сопутствующему выделению энергии. Тем не менее, базовый слой достаточно тонок и легирован достаточно слабо, это увеличивает общее время процесса взаимодействия, поэтому гораздо большее количество эмиттерных НЗ успевает проникнуть в коллекторный слой. Кроме того, сказывается действие силы электрического поля, образуемого смещённым коллекторным переходом. Благодаря этой силе значительно увеличивается количество перетягиваемых из базового слоя электронов.

В результате, значение коллекторного тока практически равняется эмиттерному за вычетом потерь в базовом слое, которыми и исчисляется ток самой базы. Для вычисления значения коллекторного тока используется формула:

где Iк – коллекторный ток, Iэ – эмиттеный ток, α– коэффициент передачи тока эмиттера.

Спектр значений коэффициента α варьируется от 0,9 до 0,99. Большие значения позволяют производить более эффективную трансляцию тока транзистором. Величина α при этом не определяется тем, какое напряжение демонстрируют К-Б и Б-Э переходы. Как результат, в условиях множества вариантов рабочего напряжения сохраняется пропорциональное соотношение между Iк и Iб. Для нахождения коэффициента данной пропорциональности применяется формула:

β = α/(1 − α).

Значения β могут находиться в диапазоне 10-100. Отсюда можно сделать вывод о том, что для регуляции работы большого коллекторного тока, вполне можно обходиться током малой силы на базе.

Разновидности порядка действия биполярных транзисторов

Нормальный активный режим

Характеристика:

  1. Открытая эмиттерно-базовая область (смещение по прямому направлению);
  2. Закрытая коллекторно-базовая область (смещение по обратному направлению);
  3. Положительный уровень напряжения в эмиттерно-базовой области;
  4. Отрицательный уровень напряжения в коллекторно-базовой области.

Пункты 3 и 4 приведены для p-n-p транзисторов. Для моделей с n-p-n структурой характеристика будет обратной данной.

Инверсный активный режим

Характеристика:

  1. Обратное смещение на эмиттерном переходе;
  2. Прямое смещение на коллекторным переходе.

Остальные пункты как для нормального активного режима.

Режим насыщения

Характеристика:

  1. Соединение Э-перехода и К-перехода с внешними источниками;
  2. Прямое смещение эмиттерного и коллекторного перехода;
  3. Ослабление диффузного электрического поля из-за электрического поля внешних источников;
  4. Снижение уровня потенциального барьера, что приведёт к ослаблению контроля диффузии основных НЗ, а также смещению большого количества дырок из эмиттерных и коллекторных областей в область базы.

Вследствие последнего пункта происходит формирование эмиттерных и коллекторных токов насыщения (Iэ.нас. и Iк.нас.)

В этом же режиме фигурирует понятие «напряжение насыщения» на переходе К-Э. Благодаря ему можно определить степень падения напряжения для открытого транзистора. Подобным образом напряжение насыщения для перехода Б-Э определяет степень падения напряжения для приведённого участка.

Режим отсечки

Характеристика:

  • Смещение по обратному направлению в К-области;
  • Смещение Э-перехода по любому направлению, при условии, что оно не превысит пороговый показатель, который отграничивает начало процесса испускания электронов эмиттером в базовый слой.

Уровень приведённого показателя в случае с кремниевым биполярным транзистором достигает 0,6-0,7 Вольт, значит режим отсечки возможен при нулевой силе тока на базе, либо при уровне напряжения менее 0,7 Вольт на Э-Б переходе.

Барьерный режим

Характеристика:

  • Соединение базового сегмента и коллектора на коротко, либо с применением малогабаритного резистора;
  • Производится подключение резистора к коллекторной или эмиттерной цепи, чтобы он мог задавать ток посредством транзисторного элемента.

Действие в представленном режиме преобразует полупроводниковый триод в аналог диода с последовательным подключением к токозадающему резистору. Каскад, построенный в соответствии с данной схемой,имеет небольшое количество составляющих и почти не зависит от характеристик используемого устройства.

Схемы включения

Для характеристики включающей транзисторной схемы применяются два значимых показателя:

  • Величина коэффициента фиксирующего усиление по току, которое вычисляется через отношение тока выхода (Iвых) к току входа (Iвх);
  • Значение входного сопротивления (Rвх), которое вычисляется через отношение входного напряжения (Uвх) к току входа (Iвх).

Включение с общей базой (ОБ)

Рис.4: Усилитель с ОБ

Характеристика:

  • Вариант схемы, при котором уровень сопротивления на входе является самым низким, а выходе – самым высоким;
  • По α (коэффициенту усиления по току) приближается к 1;
  • Обладает большим Кu (коэффициентом усиления по напряжению);
  • Не происходит инвертации фазы сигнала.

Для определения коэффициента α необходимо вычислить отношение тока коллектора к току эмиттера (иначе – отношение тока выхода к току входа).

Для определения входного сопротивления Rвх следует вычислить соотношение входного напряжения и входного тока (иначе – соотношение напряжения на переходе Э-Б и эмиттерного тока). Значение этого параметра для схем с ОБ достигает максимум 100 Ом (в биполярном транзисторе малой мощности).

Плюсы применения схем включения с ОБ

  • Хорошее температурное и частотное значение;
  • Высокий уровень допустимого напряжения.

Минусы применения схем включения с ОБ

  • Незначительная степень усиления по току (поскольку, значение коэффициента α не достигает единицы);
  • Низкий уровень входного сопротивления;
  • Работа обеспечивается двумя разными источниками напряжения.

Включение с общим эмиттером (ОЭ)

Характеристика:

  • Ток на выходе соответствует току коллектора;
  • Ток на входе соответствует току базы;
  • Напряжение на входе соответствует напряжению на Б-Э переходе;

Вычислить коэффициент β (усиление по току) для данной схемы можно, через отношение тока выхода к току входа (тока коллектора к току базы; тока коллектора к разности эмиттерного и коллекторного токов).

Для определения входного сопротивления (Rвх) высчитывается отношение напряжения на входе к току на входе (напряжения на Б-Э переходе к току на базе).

  • Большое значение коэффициента β;
  • Большое значение коэффициента усиления по напряжению;
  • Самый высокий уровень усиления мощности;
  • Задействуется только один источник питания;
  • Происходит инвертация выходного напряжения (по отношению к входному).

Плюсы применения схем включения с ОЭ

  • Температурное и частотное значение гораздо ниже относительно схем включения с ОБ.

Включение с общим коллектором (ОК)

Характеристика:

  • Ток на выходе соответствует току на эмиттере;
  • Ток на входе соответствует величине тока в области базы;
  • Напряжение на входе соответствует напряжению на Б-К переходе;
  • Напряжение на выходе соответствует напряжению на К-Э переходе.

Вычисление β показателя осуществляется через отношение тока на выходе к току на входе (тока в области эмиттера к току в области базы; тока эмиттерной области к разнице Э и К тока).

Величина сопротивления на входе определяется по отношению напряжения на входе к току на входе (отношению суммы напряжений на Б-Э и К-Э переходах к токовому показателю на базе).

Схема с данным типом подключения носит название эмиттерного повторителя.

Плюсы эксплуатации схем включения с ОК

  • Значительный уровень сопротивления на входе;
  • Низкий уровень сопротивления на выходе.

Минусы эксплуатации схем включения с ОК

  • Величина показателя, характеризующего усиление по напряжению, не достигает единицы.

Значимые показатели у биполярных транзисторов

  • Величина показателя, характеризующего передачу по току;
  • Уровень сопротивления на выходе;
  • Величина выходной проводимости;
  • Величина обратного К-Э тока;
  • Время, требуемое для включения;
  • Уровень предельной частоты показателя, характеризующего передачу тока базы;
  • Величина обратного тока в коллекторной области;
  • Величина максимально допустимого тока;
  • Уровень граничной частоты показателя, характеризующего передачу тока (для схем с ОЭ).

Существует деление определяющих качеств биполярного транзистора на две основные группы. Первая группа параметров определяет перечень признаков, проявляющихся при работе транзистора, но не зависящих от использованного типа подключения. Сюда относятся:

  • Величина показателя усиления по току α;
  • Общее сопротивление эмиттера;
  • Общее сопротивление коллектора;
  • Значение сопротивления на базе по поперечному направлению.

Если говорить о параметрах второй группы, то они меняются согласно использованной схеме включения. Кроме того, необходимо учитывать отсутствие линейности транзисторных свойств, поэтому перечень вторичных характеристик можно применять только по отношению к низкоуровневым частотам и импульсам с малой амплитудой.

Вторичными параметрами считают:

  • Уровень сопротивления на входе;
  • Значение показателя демонстрирующего обратную связь по напряжению;
  • Величина показателя передачи тока;
  • Уровень выходной проводимости.

Помимо вышеперечисленных моментов следует учитывать, что высокая частота влечёт за собой снижение ёмкостного сопротивления, снижение силы тока и последующее уменьшение величин коэффициентов α и β. Частотный показатель, вызывающий уменьшение α и β на 3 дБ обозначается как граничный.

Сферы применения

Полупроводниковые триоды могут использоваться для создания:

  • Усилителей, каскадов усиления;
  • Генераторов сигналов;
  • Модуляторов;
  • Демодуляторов (детекторов);
  • Инверторов (логических элементов) и т.д.

Дополнительную информацию можно найти на http://www.aistsoft.ru/ . Система АИСТ крупный ресурс данных по специализированной информации(технические описания, паспорта, чертежи, сертификаты и другое).

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад если вы найдете на моем еще что-нибудь полезное.

В зависимости от принципа действия и конструктивных признаков транзисторы подразделяются на два больших класса: биполярные и полевые .

Биполярный транзистор - это полупроводниковый прибор с двумя взаимодействующими между собой р-п-переходами и тремя или более выводами.

Полупроводниковый кристалл транзистора состоит из трех областей с чередующимися типами электропроводности, между которыми находятся два р-п -перехода. Средняя область обычно выполняется очень тонкой (доли микрона), поэтому р-п -переходы близко расположены один от другого.

В зависимости от порядка чередования областей полупроводника с различными типами электропроводности различают транзисторы р-п-р и п-р-п- типов. Упрощенные структуры и УГО разных типов транзисторов показаны на рисунке 1.23, а , б .

Рисунок 1.23 - Структура и УГО биполярных транзисторов

Биполярный транзистор является наиболее распространенным активным полупроводниковым прибором. В качестве основного материала для изготовления биполярных транзисторов в настоящее время используется кремний. При этом преимущественно изготовляют транзисторы п-р-п -типа, в которых основными носителями заряда являются электроны, имеющие подвижность в два-три раза выше, чем подвижность дырок.

Управление величиной протекающего в выходной цепи (в цепи коллектора или эмиттера) биполярного транзистора тока осуществляется с помощью тока в цепи управляющего электрода - базы . Базой называется средний слой в структуре транзистора. Крайние слои называются эмиттер (испускать, извергать) и коллектор (собирать). Концентрация примесей (а, следовательно, и основных носителей зарядов) в эмиттере существенно больше, чем в базе и больше, чем в коллекторе. Поэтому эмиттерная область самая низкоомная .

Для иллюстрации физических процессов в транзисторе воспользуемся упрощенной структурой транзистора п-р-п- типа, приведенной на рисунке 1.24. Для понимания принципа работы транзистора исключительно важно учитывать, что р-п -переходы транзистора сильно взаимодействуют друг с другом. Это означает, что ток одного перехода сильно влияет на ток другого, и наоборот.

В активном режиме (когда транзистор работает как усилительный элемент) к транзистору подключают два источника питания таким образом, чтобы эмиттерный переход был смещен в прямом направлении , а коллекторный - в обратном (рисунок 1.24). Под действием электрического поля источника Е БЭ через эмиттерный переход течет достаточно большой прямой ток I Э, который обеспечивается, главным образом, инжекцией электронов из эмиттера в базу Инжекция дырок из базы в эмиттер будет незначительной вследствие указанного выше различия в концентрациях атомов примесей.



Рисунок 1.24 - Физические процессы в биполярном транзисторе

Поток электронов, обеспечивающий ток I Э через переход эмиттер - база показан на рисунке 1.24 широкой стрелкой. Часть инжектированных в область базы электронов (1 … 5%) рекомбинируют с основными для этой области носителями заряда - дырками, образуя во внешней цепи базы ток I Б. Вследствие большой разности концентраций основных носителей зарядов в эмиттере и базе, нескомпенсированные инжектированные в базу электроны движутся в глубь ее по направлению к коллектору .

Вблизи коллекторного р-п- перехода электроны попадают под действие ускоряющего электрического поля этого обратносмещенного перехода. А поскольку в базе они являются неосновными носителями, то происходит втягивание (экстракция ) электронов в область коллектора. В коллекторе электроны становятся основными носителями зарядов и легко доходят до коллекторного вывода, создавая ток во внешней цепи транзистора.

Таким образом, ток через базовый вывод транзистора определяют две встречно направленные составляющие тока . Если бы в базе процессы рекомбинации отсутствовали, то эти токи были бы равны между собой, а результирующий ток базы был бы равен нулю. Но так как процессы рекомбинации имеются в любом реальном транзисторе, то ток эмиттерного p-n -перехода несколько больше тока коллекторного p-n -перехода.

Для тока коллектора можно записать следующее равенство

, (1.9)

где a ст - статический коэффициент передачи тока эмиттера;

I КБО - обратный ток коллекторного перехода (тепловой ток) (у транзисторов малой мощности при нормальной температуре составляет 0, 015 ... 1 мкА).

На практике статический коэффициент передачи тока эмиттера a ст , взависимости от типа транзистора, может принимать значения в диапазоне 0,95 … 0,998.

Ток эмиттера в транзисторе численно является самым большим и равен

, (1.11)

где - статический коэффициент передачи тока базы в схеме с общим эмиттером (в справочной литературе используется обозначение h 21Э , обычно принимает значение b ст = 20 … 1000 в зависимости от типа и мощности транзистора).

Из ранее сказанного следует, что транзистор представляет собой управляемый элемент, поскольку значение его коллекторного (выходного) тока зависит от значений токов эмиттера и базы.

Заканчивая рассмотрение принципа работы биполярного транзистора, следует отметить, что сопротивление обратносмещенного коллекторного перехода (при подаче на него обратного напряжения) очень велико (сотни килоом). Поэтому в цепь коллектора можно включать нагрузочные резисторы с весьма большими сопротивлениями , тем самым практически не изменяя значения коллекторного тока. Соответственно в цепи нагрузки будет выделяться значительная мощность.

Сопротивление прямосмещенного эмиттерного перехода, напротив, весьма мало (десятки - сотни Ом). Поэтому при почти одинаковых значениях эмиттерного и коллекторного токов мощность, потребляемая в цепи эмиттера, оказывается существенно меньше мощности, выделяемой в цепи нагрузки. Это указывает на то, что транзистор является полупроводниковым прибором, усиливающим мощность .

Технология изготовления биполярных транзисторов может быть различной: сплавление , диффузия , эпитаксия . Это в значительной мере определяет характеристики прибора. Типовые структуры биполярных транзисторов, изготовленных различными методами, приведены на рисунке 1.25. В частности, на рисунке 1.25, а показана структура сплавного , на рисунке 1.25, б - эпитаксиально -диффузионного , на рисунке 1.25, в - планарного , на рисунке 1.25, г - мезапланарного транзисторов .


Рисунок 1.25 - Способы изготовления биполярных транзисторов

Режимы работы и схемы включения транзистора

На каждый р-п- переход транзистора может быть подано как прямое, так и обратное напряжение. В соответствии с этим различают четыре режима работы биполярного транзистора: режим отсечки , режим насыщения , активный режим и инверсный режим.

Активный режим обеспечивается подачей на эмиттерный переход прямого напряжения, а на коллекторный - обратного (основной режим работы транзистора). Этот режим соответствует максимальному значению коэффициента передачи тока эмиттера и обеспечивает минимальное искажение усиливаемого сигнала.

В инверсном режиме к коллекторному переходу приложено прямое напряжение, к эмиттерному - обратное (a ст ® min; используется очень редко).

В режиме насыщения оба перехода находятся под прямым смещением. В этом случае выходной ток не зависит от входного и определяется только параметрами нагрузки.

В режиме отсечки оба перехода смещены в обратных направлениях. Выходной ток близок к нулю.

Режимы насыщения и отсечки используется одновременно в ключевых схемах (при работе транзистора в ключевом режиме).

При использовании транзистора в электронных устройствах нужны два вывода для подачи входного сигнала и два вывода для подключения нагрузки (снятия выходного сигнала). Поскольку у транзистора всего три вывода, один из них должен быть общим для входного и выходного сигналов.

В зависимости от того, какой вывод транзистора является общим при подключении источника сигнала и нагрузки, различают три схемы включения транзистора: с общей базой (ОБ) (рисунок 1.26, а ); с общим эмиттером (ОЭ) (рисунок 1.26, б ); с общим коллектором (ОК) (рисунок 1.26, в ).

В этих схемах источники постоянного напряжения и резисторы обеспечивают режимы работы транзисторов по постоянному току, то есть необходимые значения напряжений и начальных токов. Входные сигналы переменного тока создаются источниками и вх. Они изменяют ток эмиттера (базы) транзистора, а, соответственно, и ток коллектора. Приращения тока коллектора (рисунок 1.26, а , б ) и тока эмиттера (рисунок 1.26, в ) создадут, соответственно, на резисторах R К и R Э приращения напряжений, которые и являются выходными сигналами и вых .


а б в

Рисунок 1.26 - Схемы включения транзистора

При определении схемы включения транзистора необходимо учитывать то, что сопротивление источника постоянного напряжения для переменного тока близко к нулю.

Вольт-амперные характеристики транзистора

Наиболее полно свойства биполярного транзистора описываются с помощью статических вольт-амперных характеристик. При этом различают входные и выходные ВАХ транзистора. Поскольку все три тока (базовый, коллекторный и эмиттерный) в транзисторе тесно взаимосвязаны, при анализе работы транзистора необходимо пользоваться одновременно входными и выходными ВАХ.

Каждой схеме включения транзистора соответствуют свои вольт-амперные характеристики, представляющие собой функциональную зависимость токов через транзистор от приложенных напряжений. Из-за нелинейного характера указанных зависимостей их представляют обычно в графической форме.

Транзистор, как четырехполюсник, характеризуется входными и выходными статическими ВАХ, показывающими соответственно зависимость входного тока от входного напряжения (при постоянном значении выходного напряжения транзистора) и выходного тока от выходного напряжения (при постоянном входном токе транзистора).

На рисунке 1.27 показаны статические ВАХ р-п-р -транзистора, включенного по схеме с ОЭ (наиболее часто применяемой на практике).


а б

Рисунок 1.27 - Статические ВАХ биполярного транзистора, включенного по схеме с ОЭ

Входная ВАХ (рисунок 1.27, а ) подобна прямой ветви ВАХ диода. Она представляет собой зависимость тока I Б от напряжения U БЭ U КЭ , то есть зависимость вида

. (1.12)

Из рисунка 1.27, а видно: чем больше напряжение U КЭ , тем правее смещается ветвь входной ВАХ. Это объясняется тем, что при увеличении обратносмещающего напряжения U КЭ происходит увеличение высоты потенциального барьера коллекторного р -п -перехода. А поскольку в транзисторе коллекторный и эмиттерный р -п -переходы сильно взаимодействуют, то это, в свою очередь, приводит к уменьшению базового тока при неизменном напряжении U БЭ .

Статические ВАХ, представленные на рисунке 1.27, а , сняты при нормальной температуре (20 °С). При повышении температуры эти характеристики будут смещаться влево, а при понижении - вправо. Это связано с тем, что при повышении температуры повышается собственная электропроводность полупроводников.

Для выходной цепи транзистора, включенного по схеме с ОЭ, строится семейство выходных ВАХ (рисунок 1.27, б ). Это обусловлено тем, что коллекторный ток транзистора зависит не только (и не столько, как видно из рисунка) от напряжения, приложенного к коллекторному переходу, но и от тока базы. Таким образом, выходной вольт-амперной характеристикой для схемы с ОЭ называется зависимость тока I К от напряжения U КЭ при фиксированном токе I Б , то есть зависимость вида

. (1.13)

Каждая из выходных ВАХ биполярного транзистора характеризуется в начале резким возрастанием выходного тока I К при возрастании выходного напряжения U КЭ , а затем, по мере дальнейшего увеличения напряжения, незначительным изменением тока.

На выходной ВАХ транзистора можно выделить три области, соответствующие различным режимам работы транзистора: область насыщения , область отсечки и область активной работы (усиления), соответствующая активному состоянию транзистора, когда ½U БЭ ½ > 0 и ½U КЭ ½> 0.

Входные и выходные статические ВАХ транзисторов используют при графо-аналитическом расчете каскадов, содержащих транзисторы.

Статические входные и выходные ВАХ биполярного транзистора р -п -р -типа для схемы включения с ОБ приведены на рисунке 1.28, а и 1.28, б соответственно.


а б

Рисунок 1.28 - Статические ВАХ биполярного транзистора для схемы включения с ОБ

Для схемы с ОБ входной статической ВАХ называют зависимость тока I Э от напряжения U ЭБ при фиксированном значении напряжения U КБ , то есть зависимость вида

. (1.14)

Выходной статической ВАХ для схемы с ОБ называется зависимость тока I К от напряжения U КБ при фиксированном токе I Э , то есть зависимость вида

. (1.15)

На рисунке 1.28, б можно выделить две области, соответствующие двум режимам работы транзистора: активный режим (U КБ < 0 и коллекторный переход смещен в обратном направлении); режим насыщения (U КБ > 0 и коллекторный переход смещен в прямом направлении).

Математическая модель биполярного транзистора

К настоящему времени известно много электрических моделей биполярных транзисторов. В системах автоматизации проектирования (САПР) радиоэлектронных средств наиболее часто используются: модели Эберса-Молла , обобщенная модель управления зарядом Гуммеля-Пуна, модель Линвилла, а также локальные П- и Т-образные модели линейных приращений Джиаколлето.

Рассмотрим, в качестве примера, один из вариантов модели Эберса-Молла (рисунок 1.29), отражающей свойства транзисторной структуры в линейном режиме работы и в режиме отсечки.


Рисунок 1.29 - Схема замещения биполярного транзистора (модель Эберса-Молла)

На рисунке 1.29 использованы обозначения: r э , r б , r к - сопротивления, соответственно, эмиттерной, базовой и коллекторной областей транзистора и контактов к ним; I б , I к - управляемые напряжением и п на входном переходе источники тока, отражающие передачу тока через транзистор; R эб - сопротивление утечки перехода база-эмиттер; R кб - сопротивление утечки перехода база-коллектор. Ток источника I б связан с напряжением на переходе соотношением

, (1.15)

где I БО - ток насыщения перехода база-эмиттер (обратный ток);

y к = (0,3 … 1,2) В - контактная разность потенциалов (зависит от типа полупроводникового материала);

т - эмпирический коэффициент.

Параллельно переходу база-эмиттер включены барьерная емкость С бэ и диффузионная емкость С дэ перехода. Величина С бэ определяется обратным напряжением на переходе и п и зависит от него по закону

, (1.16)

где С 0б - емкость перехода при и п = 0;

g = 0,3 ... 0,5 - коэффициент, зависящий от распределения примесей в области базы транзистора.

Диффузионная емкость является функцией тока I б , протекающего через переход, и определяется выражением

где А - коэффициент, зависящий от свойств перехода и его температуры.

Коллекторно-базовый переход моделируется аналогично, отличие состоит лишь в учете только барьерной емкости перехода

, (1.18)

так как при работе транзистора в линейном режиме и режиме отсечки коллекторного тока этот переход закрыт. Выражение для тока управляемого источника коллекторного тока , моделирующего усилительные свойства транзистора, имеет вид

, (1.19)

где b ст - статический коэффициент передачи тока базы транзистора в схеме с общим эмиттером.

Параметры модели Эберса-Молла могут быть получены либо расчетным путем на основе анализа физико-топологической модели транзистора, либо измерены экспериментально. Наиболее легко определяются статические параметры модели на постоянном токе.

Глобальная электрическая модель дискретного биполярного транзистора, учитывающая индуктивности и емкости его выводов, представлена на рисунке 1.30.

Рисунок 1.30 - Глобальная модель биполярного транзистора

Основные параметры биполярного транзистора

При определении переменных составляющих токов и напряжений (то есть при анализе электрических цепей на переменном токе) и при условии, что транзистор работает в активном режиме, его часто представляют в виде линейного четырехполюсника (рисунок 1.31, а ). Названия (физическая сущность) входных и выходных токов и напряжений такого четырехполюсника зависят от схемы включения транзистора.


а б

Рисунок 1.31 - Представление биполярного транзистора линейным четырехполюсником

Для схемы включения транзистора с общим эмиттером токи и напряжения четырехполюсника (рисунок 1.31, б ) соответствуют следующим токам и напряжениям транзистора:

- i 1 - переменная составляющая тока базы;

- u 1 - переменная составляющая напряжения между базой и эмиттером;

- i 2 - переменная составляющая тока коллектора;

- u 2 - переменная составляющая напряжения между коллектором и эмиттером.

Транзистор удобно описывать, используя так называемые h -параметры. При этом система уравнений четырехполюсника в матричном виде примет вид

. (1.20)

Коэффициенты h ij (то есть h -параметры) определяют опытным путем, используя поочередно режимы короткого замыкания и холостого хода на входе и выходе четырехполюсника.

Сущность h -параметров для схемы включения транзистора с ОЭ следующая:

- - входное сопротивление транзистора для переменного сигнала при коротком замыкании на выходе;

- r б - омическое сопротивление тела базы. У реальных транзисторов достигает значений 100 … 200 Ом;

- r э - сопротивление р -п -перехода, значение которого зависит от режима работы транзистора и меняется в активном режиме в пределах долей - десятков Ом;

B - дифференциальный коэффициент передачи тока базы, определяемый из выражения

; (1.25)

Сопротивление коллекторной области, определяемое из выражения

, (1.26)

где r к - дифференциальное сопротивление коллекторного перехода (обычно находится в пределах доли - десятки МОм), определяемое из выражения

(1.27)

Страница 1 из 2

Устройство и принцип действия биполярного транзистора

Биполярный транзистор представляет собой полупроводниковый прибор, имеющий два электронно-дырочных перехода, образованных в одном монокристалле полупроводника. Эти переходы образуют в полупроводнике три области с различными типами электропроводности. Одна крайняя область называется эмиттером (Э), другая - коллектором (К), средняя - базой (Б). К каждой области припаивают металлические выводы для включения транзистора в электрическую цепь.
Электропроводность эмиттера и коллектора противоположна электропроводности базы. В зависимости от порядка чередования р- и n-областей различают транзисторы со структурой р-n-р и n-р-n. Условные графические обозначения транзисторов р-n-р и n-р-n отличаются лишь направлением стрелки у электрода, обозначающего эмиттер.

Принцип работы транзисторов р-n-р и n-р-n одинаков, поэтому в дальнейшем будем рассматривать лишь работу транзистора со структурой р-n-р.
Электронно-дырочный переход, образованный эмиттером и базой, называется эмиттерным, а коллектором и базой - коллекторным. Расстояние между переходами очень мало: у высокочастотных транзисторов оно менее 10 микрометров (1 мкм = 0,001 мм), а у низкочастотных не превышает 50 мкм.
При работе транзистора на его переходы поступают внешние напряжения от источника питания. В зависимости от полярности этих напряжений каждый переход может быть включен как в прямом, так и в обратном направлении. Различают три режима работы транзистора: 1) режим отсечки - оба перехода и, соответственно, транзистор полностью закрыты; 2) режим насыщения - транзистор полностью открыт;3) активный режим - это режим, промежуточный между двумя первыми. Режимы отсечки и насыщения совместно применяются в ключевых каскадах, когда транзистор попеременно то полностью открыт, то полностью заперт с частотой импульсов, поступающих на его базу. Каскады, работающие в ключевом режиме, применяются в импульсных схемах (импульсные блоки питания, выходные каскады строчной развертки телевизоров и др.). Частично в режиме отсечки могут работать выходные каскады усилителей мощности.
Наиболее часто транзисторы применяются в активном режиме. Такой режим определяется подачей на базу транзистора напряжения небольшой величины, которое называется напряжением смещения (U см.) Транзистор приоткрывается и через его переходы начинает течь ток. Принцип работы транзистора основан на том, что относительно небольшой ток, текущий через эмиттерный переход (ток базы), управляет током большей величины в цепи коллектора. Ток эмиттера представляет собой сумму токов базы и коллектора.

Режимы работы биполярного транзистора


Режим отсечки
транзистора получается тогда, когда эмиттерный и коллекторный р-n-переходы подключены к внешним источникам в обратном направлении. В этом случае через оба р-n-перехода протекают очень малые обратные токи эмиттера (I ЭБО ) И коллектора (I КБО ). Ток базы равен сумме этих токов и в зависимости от типа транзистора находится в пределах от единиц микроампер - мкА (у кремниевых транзисторов) до единиц миллиампер - мА (у германиевых транзисторов).

Если эмиттерный и коллекторный р-n-переходы подключить к внешним источникам в прямом направлении, транзистор будет находиться в режиме насыщения . Диффузионное электрическое поле эмиттерного и коллекторного переходов будет частично ослабляться электрическим полем, создаваемым внешними источниками U ЭБ и U КБ . В результате уменьшится потенциальный барьер, ограничивавший диффузию основных носителей заряда, и начнется проникновение (инжекция) дырок из эмиттера и коллектора в базу, то есть через эмиттер и коллектор транзистора потекут токи, называемые токами насыщения эмиттера (I Э.нас ) и коллектора (I К.нас ).


Для усиления сигналов применяется активный режим работы транзистора .
При работе транзистора в активном режиме его эмиттерный переход включается в прямом, а коллекторный - в обратном направлениях.


Под действием прямого напряжения U ЭБ происходит инжекция дырок из эмиттера в базу. Попав в базу n-типа, дырки становятся в ней неосновными носителями заряда и под действием сил диффузии движутся (диффундируют) к коллекторному р-n-переходу. Часть дырок в базе заполняется (рекомбинирует) имеющимися в ней свободными электронами. Однако ширина базы небольшая - от нескольких единиц до 10 мкм. Поэтому основная часть дырок достигает коллекторного р-n-перехода и его электрическим полем перебрасывается в коллектор. Очевидно, что ток коллектора I Кp не может быть больше тока эмиттера, так как часть дырок рекомбинирует в базе. Поэтому I Kp = h 21Б I э
Величина h 21Б называется статическим коэффициентом передачи тока эмиттера. Для современных транзисторов h 21Б = 0,90…0,998. Так как коллекторный переход включен в обратном направлении (часто говорят - смещен в обратном направлении), через него протекает также обратный ток I КБО , образованный неосновными носителями базы (дырками) и коллектора (электронами). Поэтому полный ток коллектора транзистора, включенного по схеме с общей базой
I к = h 21БI э + I КБО
Дырки, не дошедшие до коллекторного перехода и прорекомбинировавшие (заполнившиеся) в базе, сообщают ей положительный заряд. Для восстановления электрической нейтральности базы в нее из внешней цепи поступает такое же количество электронов. Движение электронов из внешней цепи в базу создает в ней рекомбинационный ток I Б.рек. Помимо рекомбинационного через базу протекает обратный ток коллектора в противоположном направлении и полный ток базы
I Б = I Б.рек - I КБО
В активном режиме ток базы в десятки и сотни раз меньше тока коллектора и тока эмиттера.

Схемы включения биполярного транзистора

В предыдущей схеме электрическая цепь, образованная источником U ЭБ , эмиттером и базой транзистора, называется входной, а цепь, образованная источником U КБ , коллектором и базой этого же транзистора,- выходной. База является общим электродом транзистора для входной и выходной цепей, поэтому такое его включение называют схемой с общей базой, или сокращенно «схемой ОБ».
На следующем рисунке изображена схема, в которой общим электродом для входной и выходной цепей является эмиттер. Это схема включения с общим эмиттером, или сокращенно «схема ОЭ» .

K I – коэффициент усиления по току

K U – коэффициент усиления по напряжению

K P – коэффициент усиления по мощности

Предыдущая страница – Следующая страница

Итак, третья и заключительная часть повествования о биполярных транзисторах на нашем сайте =) Сегодня мы поговорим об использовании этих замечательных устройств в качестве усилителей, рассмотрим возможные схемы включения биполярного транзистора и их основные преимущества и недостатки. Приступаем!

Эта схема очень хороша при использовании сигналов высоких частот. В принципе для этого такое включение транзистора и используется в первую очередь. Очень большими минусами являются малое входное сопротивление и, конечно же, отсутствие усиления по току. Смотрите сами, на входе у нас ток эмиттера , на выходе .

То есть ток эмиттера больше тока коллектора на небольшую величину тока базы. А это значит, что усиление по току не просто отсутствует, более того, ток на выходе немного меньше тока на входе. Хотя, с другой стороны, эта схема имеет достаточно большой коэффициент передачи по напряжению) Вот такие вот достоинства и недостатки, продолжаем….

Схема включения биполярного транзистора с общим коллектором

Вот так вот выглядит схема включения биполярного транзистора с общим коллектором. Ничего не напоминает?) Если взглянуть на схему немного под другим углом, то мы узнаем тут нашего старого друга – эмиттерный повторитель. Про него была чуть ли не целая статья (), так что все, что касается этой схемы мы уже там рассмотрели. А нас тем временем ждет наиболее часто используемая схема – с общим эмиттером.

Схема включения биполярного транзистора с общим эмиттером.

Эта схема заслужила популярность своими усилительными свойствами. Из всех схем она дает наибольшее усиление по току и по напряжению, соответственно, велико и увеличение сигнала по мощности. Недостатком схемы является то, что усилительные свойства сильно подвержены влиянию роста температуры и частоты сигнала.

Со всеми схемами познакомились, теперь рассмотрим подробнее последнюю (но не последнюю по значимости) схему усилителя на биполярном транзисторе (с общим эмиттером). Для начала, давайте ее немножко по-другому изобразим:

Тут есть один минус – заземленный эмиттер. При таком включении транзистора на выходе присутствуют нелинейные искажения, с которыми, конечно же, нужно бороться. Нелинейность возникает из-за влияния входного напряжения на напряжение перехода эмиттер-база. Действительно, в цепи эмиттера ничего «лишнего» нету, все входное напряжение оказывается приложенным именно к переходу база-эмиттер. Чтобы справиться с этим явлением, добавим резистор в цепь эмиттера. Таким образом, мы получим отрицательную обратную связь.

А что же это такое?

Если говорить кратко, то принцип отрицательной обратно й связи заключается в том, что какая то часть выходного напряжения передается на вход и вычитается из входного сигнала. Естественно, это приводит к уменьшению коэффициента усиления, поскольку на вход транзистора из-за влияния обратной связи поступит меньшее значение напряжение, чем в отсутствие обратной связи.

И тем не менее, отрицательная обратная связь для нас оказывается очень полезной. Давайте разберемся, каким образом она поможет уменьшить влияние входного напряжения на напряжение между базой и эмиттером.

Итак, пусть обратной связи нет, Увеличение входного сигнала на 0.5 В приводит к такому же росту . Тут все понятно 😉 А теперь добавляем обратную связь! И точно также увеличиваем напряжение на входе на 0.5 В. Вслед за этим возрастает , что приводит к росту тока эмиттера. А рост приводит к росту напряжения на резисторе обратной связи. Казалось бы, что в этом такого? Но ведь это напряжение вычитается из входного! Смотрите, что получилось:

Выросло напряжение на входе – увеличился ток эмиттера – увеличилось напряжение на резисторе отрицательной обратной связи – уменьшилось входное напряжение (из-за вычитания ) – уменьшилось напряжение .

То есть отрицательная обратная связь препятствует изменению напряжения база-эмиттер при изменении входного сигнала.

В итоге наша схема усилителя с общим эмиттером пополнилась резистором в цепи эмиттера:

Есть еще одна проблема в нашем усилителе. Если на входе появится отрицательное значение напряжения, то транзистор сразу же закроется (напряжения базы станет меньше напряжения эмиттера и диод база-эмиттер закроется), и на выходе ничего не будет. Это как то не очень хорошо) Поэтому необходимо создать смещение . Сделать это можно при помощи делителя следующим образом:

Получили такую красотищу 😉 Если резисторы и равны, то напряжение на каждом из них будет равно 6В (12В / 2). Таким образом, при отсутствии сигнала на входе потенциал базы будет равен +6В. Если на вход придет отрицательное значение, например, -4В, то потенциал базы будет равен +2В, то есть значение положительное и не мешающее нормальной работе транзистора. Вот как полезно создать смещение в цепи базы)

Чем бы еще улучшить нашу схему…

Пусть мы знаем, какой сигнал будем усиливать, то есть знаем его параметры, в частности частоту. Было бы отлично, если бы на входе ничего, кроме полезного усиливаемого сигнала не было. Как это обеспечить? Конечно, же при помощи фильтра высоких частот) Добавим конденсатор, который в сочетании с резистором смещения образует ФВЧ:

Вот так схема, в которой почти ничего не было, кроме самого транзистора, обросла дополнительными элементами 😉 Пожалуй, на этом и остановимся, скоро будет статья, посвященная практическому расчету усилителя на биполярном транзисторе. В ней мы не только составим принципиальную схему усилителя , но и рассчитаем номиналы всех элементов, а заодно и выберем транзистор, подходящий для наших целей. До скорой встречи! =)

Биполярные транзисторы это полупроводниковые приборы с тремя электродами, подключенными к трем последовательно находящимся слоям, с различной проводимости. В отличие от других транзисторов, которые переносят один тип заряда, он способен переносить сразу два типа.

Схемы подключения, использующие биполярные транзисторы, зависят от производимой работы и типа проводимости. Проводимость может быть электронной, дырочной.

Разновидности биполярных транзисторов

Биполярные транзисторы разделяют по различным признакам на виды по:

  • Материалу изготовления : кремний или арсенид галлия.
  • Величине частоты : до 3 МГц – низкая, до 30 МГц – средняя, до 300 МГц – высокая, более 300 МГц – сверхвысокая.
  • Наибольшей рассеиваемой мощности : 0-0,3 Вт, 0,3-3 Вт, свыше 3 Вт.
  • Типу прибора : 3 слоя полупроводника с последовательной очередностью типа проводимости.

Устройство и работа

Слои транзистора, как внутренний, так и наружный, объединены с встроенными электродами, которые имеют свои названия в виде базы, эмиттера и коллектора.

Особых отличий по видам проводимости у коллектора и эмиттера не наблюдается, однако процент включения примесей у коллектора намного меньше, что позволяет повысить допустимое напряжение на выходе.

Средний слой полупроводника (база) имеет большую величину сопротивления, так как выполнена из слаболегированного материала. Она контактирует с коллектором на значительной площади. Это позволяет повысить теплоотвод, который необходим вследствие выделения тепла от смещения перехода в другую сторону. Хороший контакт базы с коллектором дает возможность легко проходить электронам, которые являются неосновными носителями.

Слои перехода выполнены по одному принципу. Однако биполярные транзисторы считаются несимметричными приборами. При чередовании крайних слоев местами с одной проводимостью нельзя образовать подобные параметры полупроводника.

Схемы подключения транзисторов выполнены таким образом, что могут обеспечить ему как закрытое, так и открытое состояние. При активной работе, когда полупроводник открыт, смещение эмиттера выполнено в прямом направлении. Для полного понимания этой конструкции, нужно подключить напряжение питания по изображенной схеме.

При этом граница на 2-м переходе коллектора закрыта, ток через нее не идет. Практически возникает обратное явление ввиду рядом расположенных переходов, их влияния друг на друга. Так как к эмиттеру подсоединен минусовой полюс батареи, то переход открытого вида дает возможность электронам проходить на базу, в которой осуществляется их рекомбинация с дырками, являющимися главными носителями. Появляется ток базы I б. Чем выше базовый ток, тем больше выходной ток. В этом заключается принцип действия усилителей.

По базе протекает только диффузионное движение электронов, так как нет работы электрического поля. Из-за малой толщины этого слоя и значительном градиенте частиц, практически все они поступают на коллектор, хотя база имеет большое сопротивление. На переходе имеется электрическое поле, которое способствует переносу и втягивает их. Токи эмиттера и коллектора одинаковые, если не считать малой потери заряда от перераспределения на базе: I э = I б + I к .

Характеристики

  • Коэффициент усиления тока β = I к / I б .
  • Коэффициент усиления напряжения U эк / U бэ .
  • Сопротивление на входе.
  • Характеристика частоты – возможность работы транзистора до определенной частоты, при выходе за границы которой процессы перехода опаздывают за изменением сигнала.

Режимы работ и схемы

Вид схемы влияет на режим действия биполярного транзистора. Сигнал может сниматься и отдаваться в двух местах для разных случаев, а электродов имеется три штуки. Следовательно, что один произвольный электрод должен быть сразу выходом и входом. По такому принципу подключаются все биполярные транзисторы, и имеют три вида схем, которые мы рассмотрим ниже.

Схема с общим коллектором

Сигнал проходит на сопротивление R L , которое также включено в цепь коллектора.

Такая схема подключения дает возможность создать всего лишь усилитель по току. Достоинством такого эмиттерного повторителя можно назвать образование значительного сопротивления на входе. Это дает возможность для согласования каскадов усиления.

Схема с общей базой

В схеме можно найти недостаток в виде малого входного сопротивления. Схема с общей базой используется чаще всего в качестве генератора колебаний.

Схема с общим эмиттером

Чаще всего при использовании биполярных транзисторов выполняют схему с общим эмиттером. Напряжение проходит по сопротивлению нагрузки R L , к эмиттеру питание подключается отрицательным полюсом.

Сигнал переменного значения приходит на базу и эмиттер. В цепи коллектора он становится по значению больше. Главными элементами схемы являются резистор, транзистор и выходная цепь усилителя с источником питания. Дополнительными элементами стали: емкость С 1 , которая не дает пройти току на вход, сопротивление R 1 , благодаря которому открывается транзистор.

В цепи коллектора напряжение транзистора и сопротивления равны значению ЭДС: E= Ik Rk +Vke .

Отсюда следует, что малым сигналом Ec определяется правило изменения разности потенциалов в переменное выходное транзисторного преобразователя. Такая схема дает возможность увеличению тока входа во много раз, так же, как напряжению и мощности.

Из недостатков такой схемы можно назвать малое сопротивление на входе (до 1 кОм). Как следствие, возникают проблемы в образовании каскадов. Сопротивление выхода равно от 2 до 20 кОм.

Рассмотренные схемы показывают действие биполярного транзистора. На его работу влияет частота сигнала и перегрев. Для решения этого вопроса применяют дополнительные отдельные меры. Эмиттерное заземление образует на выходе искажения. Для создания надежности схемы, выполняют подключение фильтров, обратных связей и т.д. После таких мер, схема работает лучше, но уменьшается усиление.

Режимы работы

На быстродействие транзистора оказывает влияние величина подключаемого напряжения. Рассмотрим разные режимы работы на примере схемы, в которой биполярные транзисторы подключаются с общим эмиттером.

Отсечка

Этот режим образуется при снижении напряжения V БЭ до 0,7 вольта. В таком случае переход эмиттера закрывается, и ток на коллекторе отсутствует, так как в базе отсутствуют электроны, и транзистор остается закрытым.

Активный режим

При подаче напряжения, достаточного для открытия транзистора, на базу, возникает малый ток входа и большой выходной ток. Это зависит от размера коэффициента усиления. В этом случае транзистор работает усилителем.

Режим насыщения

Эта работа имеет свои отличия от активного режима. Полупроводник открывается до конца, коллекторный ток достигает наибольшего значения. Его повышения можно добиться только путем изменения нагрузки, либо ЭДС выходной схемы. При корректировке тока базы ток коллектора не изменяется. Режим насыщения имеет особенности в том, что транзистор открыт полностью и работает переключателем. Если объединить режимы насыщения и отсечки биполярных транзисторов, то можно создать ключи.

Свойства характеристик выхода влияют на режимы. Это изображено на графике.

При отложении на осях координат отрезков, соответствующих наибольшему току коллектора и размеру напряжения, и далее, объединения концов друг с другом, образуется красная линия нагрузки. По графику видно: точка тока и напряжения сместится по линии нагрузки вверх при повышении базового тока.

Участок между заштрихованной характеристикой выхода и осью Vke является работа отсечки. В этом случае транзистор закрыт, а обратная величина тока мала. Характеристика в точке А вверху пересекается с нагрузкой, после которой при последующем повышении I В ток коллектора уже не меняется. На графике участком насыщения является закрашенная часть между осью Ik и наиболее крутым графиком.

Биполярные транзисторы в различных режимах

Транзистор взаимодействует с сигналами разных видов во входной цепи. В основном транзистор применяется в усилителях. Входной переменный сигнал изменяет ток на выходе. В этом случае используются схемы с общим эмиттером или коллектором. В цепи выхода для сигнала необходима нагрузка.

Чаще всего для этого применяют сопротивление, установленное в цепи выхода коллектора. При его правильном выборе, значение напряжения на выходе будет намного больше, чем на входе.

Во время преобразования сигнала импульсов режим сохраняется таким же, как для синусоидальных сигналов. Качество изменения гармоник определяется характеристиками частоты полупроводников.

Режим переключения

Транзисторные ключи служат для бесконтактных переключений в электрических цепях. Эта работа заключается в прерывистой регулировке величины сопротивления полупроводника. Биполярные транзисторы наиболее применимы в устройствах переключения.

Полупроводники применяются в схемах изменения сигналов. Их универсальная работа и широкая классификация дает возможность использовать транзисторы в различных цепях, которые определяют их возможности работы. Основными применяемыми схемами являются усиливающие, а также переключающие цепи.

Статьи по теме