Что располагается в цитоплазме. Основные функции и роль цитоплазмы в клетках

  • Что такое цитоплазма

    Что такое цитоплазма

    Наряду с именно цитоплазма является одной из главных частей клетки, этого строительного материала всякой органической материи. Цитоплазма играет в жизни клетки очень важную роль, она объединяет собой все клеточные структуры, способствует их взаимодействию друг с другом. Также в цитоплазме располагается ядро клетки и все . Если говорить простыми словами, то цитоплазма представляет собой такое вещество, в котором находятся все другие составные части клетки.

    Строение цитоплазмы

    В состав цитоплазмы входят различные химические соединения, которые представляют собой не однородное химическое вещество, а сложную физико-химическую систему, она к тому же постоянно меняется и развивается и имеет в себе большое содержание воды. Важным компонентом цитоплазмы является белковая смесь в коллоидном состоянии в сочетании с нуклеиновыми кислотами, жирами и углеводами.

    Также цитоплазма разделяется на две составные части:

    • эндоплазму,
    • экзоплазму.

    Эндоплазма располагается в центре клетки и имеет более текучую структуру. Именно в ней находятся все самые важные органоиды клетки. Экзоплазма располагается по периметру клетки, где граничит с ее мембраной, она более вязкая и плотная по консистенции. Она играет связующую роль клетки с окружающей средой.

    Рисунок цитоплазмы.

    Функции цитоплазмы

    Какую функцию выполняет цитоплазма? Очень важную – в цитоплазме проходят все процессы клеточного метаболизма, за исключением синтеза нуклеиновых кислот (он осуществляется в ядре клетки). Помимо этой, самой важной функции, цитоплазма играет такие полезные роли:

    • заполняет клеточную полость,
    • является связующим звеном для клеточных компонентов,
    • определяет положение органоидов,
    • является проводником для физических и химических процессов на внутриклеточном и межклеточном уровнях,
    • поддерживает внутреннее клетки, ее объем, упругость и т. д.

    Движение цитоплазмы

    Способность цитоплазмы к движению является важным ее свойством, благодаря этому обеспечивается связь органоидов клетки. В биологии движение цитоплазмы называется циклозом, оно является постоянным процессом. Движение цитоплазмы в клетке может иметь струйчатый, колебательный или круговой характер.

    Деление цитоплазмы

    Еще одним свойством цитоплазмы является ее деление, без которого было бы попросту невозможно само деление клетки. Деление цитоплазмы осуществляется посредством , о чем вы можете почитать больше в статье по ссылке.

    Цитоплазма, видео

    И в завершение образовательное видео о сути цитоплазмы

  • Гелеобразное содержимое клетки, ограниченное мембраной называется цитоплазмой живой клетки. Понятие было введено в 1882 году немецким ботаником Эдуардом Страсбургером.

    Строение

    Цитоплазма является внутренней средой любой клетки и характерна для клеток бактерий, растений, грибов, животных.
    Цитоплазма состоит из следующих компонентов:

    • гиалоплазмы (цитозоли) - жидкого вещества;
    • клеточных включений - необязательных компонентов клетки;
    • органоидов - постоянных компонентов клетки;
    • цитоскелета - клеточного каркаса.

    Химический состав цитозоли включает следующие вещества:

    • воду - 85 %;
    • белки - 10 %
    • органические соединения - 5 %.

    К органическим соединениям относятся:

    • минеральные соли;
    • углеводы;
    • липиды;
    • азотсодержащие соединения;
    • незначительное количество ДНК и РНК;
    • гликоген (характерен для животных клеток).

    Рис. 1. Состав цитоплазмы.

    Цитоплазма содержит запас питательных веществ (капли жира, зёрна полисахаридов), а также нерастворимые отходы жизнедеятельности клетки.

    Цитоплазма бесцветна и постоянно движется, перетекает. Она содержит все органеллы клетки и осуществляет их взаимосвязь. При частичном удалении цитоплазма восстанавливается. При полном удалении цитоплазмы клетка погибает.

    Строение цитоплазмы неоднородно. Условно выделяют два слоя цитоплазмы:

    ТОП-4 статьи которые читают вместе с этой

    • эктоплазму (плазмагель) - наружный плотный слой, не содержащий органелл;
    • эндоплазму (плазмазоль) - внутренний более жидкий слой, содержащий органеллы.

    Разделение на эктоплазму и эндоплазму ярко выражено у простейших. Эктоплазма помогает клетке передвигаться.

    Снаружи цитоплазма окружена цитоплазматической мембраной или плазмалеммой. Она защищает клетку от повреждений, осуществляет выборочный транспорт веществ и обеспечивает раздражимость клетки. Мембрана состоит из липидов и белков.

    Жизнедеятельность

    Цитоплазма - жизненно важное вещество, участвующее в главных процессах клетки:

    • метаболизме;
    • росте;
    • делении.

    Движение цитоплазмы называется циклозом или цитоплазматическим потоком. Он осуществляется в клетках эукариот, в том числе и человека. При циклозе цитоплазма доставляет вещества всем органеллам клетки, осуществляя клеточный метаболизм. Перемещается цитоплазма посредством цитоскелета с затратой АТФ.

    При увеличении объёма цитоплазмы клетка растёт. Процесс деления тела эукариотической клетки после деления ядра (кариокинеза) называется цитокинезом. В результате деления тела цитоплазма вместе с органеллами распределяется между двумя дочерними клетками.

    Рис. 2. Цитокинез.

    Функции

    Основные функции цитоплазмы в клетке описаны в таблице.

    Отделение цитоплазмы от мембраны при осмосе воды, выходящей наружу, называется плазмолизом. Обратный процесс - деплазмолиз - происходит при поступлении в клетку достаточного количества воды. Процессы характерны для любых клеток, кроме животной.

    Рис. 3. Плазмолиз и деплазмолиз.

    Что мы узнали?

    Цитоплазма представляет собой полужидкую субстанцию, в которой находятся органеллы и включения клетки. Роль цитоплазмы в клетке важна для работы и взаимосвязи всех органелл. Подвижность и тургор цитоплазмы способствуют доставке веществ из внешней среды и обратно, а также внутриклеточному метаболизму. Без цитоплазмы клетка становится нежизнеспособной.

    Тест по теме

    Оценка доклада

    Средняя оценка: 4.7 . Всего получено оценок: 177.

    клеточные включения;

  • вакуоли (у растений и грибов);
  • клеточный центр;
  • пластиды (у растений);
  • реснички и жгутики;
  • микрофиламенты;
  • микротрубочки.
  • Ядро, отделенное кариолеммой, с ядрышками и молекулами ДНК, также содержит цитоплазма клетки. В центре оно у животных, ближе к стенке - у растений.

    Таким образом, особенности строения цитоплазмы будут во многом зависеть от типа клетки, от самого организма, его принадлежности к царству живых существ. В целом же она занимает все свободное пространство внутри и выполняет ряд важных функций.

    Матрикс, или гиалоплазма

    Строение цитоплазмы клетки складывается в первую очередь из ее деления на части:

    • гиалоплазма - постоянная жидкая часть;
    • органоиды;
    • включения - переменные структуры.

    Матрикс, или гиалоплазма, - это главная внутренняя составляющая, которая может находиться в двух состояниях - золе и геле.

    Цитозоль - такая цитоплазма клетки, которая обладает более жидким агрегатным характером. Цитогель - то же самое, но в более густом, богатом крупными молекулами органических веществ, состоянии. Общий химический состав и физические свойства гиалоплазмы выражаются так:

    • бесцветное, вязкое коллоидное вещество, достаточно густое и слизистое;
    • имеет четкую дифференциацию по структурной организации, однако вследствие подвижности легко может ее изменять;
    • изнутри представлена цитоскелетом или микротрабекулярной решеткой, которая образуется за счет белковых нитей (микротрубочек и микрофиламентов);
    • на частях данной решетки и располагаются все структурные части клетки в целом, а за счет микротрубочек, аппарата Гольджи и ЭПС между ними через гиалоплазму происходит сообщение.

    Таким образом, гиалоплазма - важная часть, которая обеспечивает многие функции цитоплазмы в клетке.

    Состав цитоплазмы

    Если говорить о химической составе, то на долю воды в цитоплазме приходится около 70 %. Это усредненное значение, ведь у некоторых растений есть клетки, в которых до 90-95% воды. Сухое вещество представлено:

    • белками;
    • углеводами;
    • фосфолипидами;
    • холестерином и другими азотсодержащими органическими соединениями;
    • электролитами (минеральными солями);
    • включениями в виде капелек гликогена (у животных клеток) и другими веществами.

      Общая химическая реакция среды - щелочная либо слабощелочная. Если рассмотреть, как располагается цитоплазма клетки, то следует отметить такую особенность. Часть собрана у края, в районе плазмалеммы, и называется эктоплазмой. Другая же часть ориентирована ближе к кариолемме, носит имя эндоплазмы.

      Строение цитоплазмы клетки определяется специальными структурами - микротрубочками и микрофиламентами, поэтому их рассмотрим подробнее.

      Микротрубочки

      Полые небольшие удлиненные частички размером до нескольких микрометров. Диаметр - от 6 до 25 нм. Из-за слишком мизерных показателей полное и емкое изучение данных структур пока невозможно, однако предполагают, что стенки их состоят из белкового вещества тубулина. Это соединение имеет цепочечную спирально закрученную молекулу.

      Некоторые функции цитоплазмы в клетке исполняются именно благодаря наличию микротрубочек. Так, например, они участвуют в выстраивании клеточных стенок грибов и растений, некоторых бактерий. В клетках животных их намного меньше. Также именно эти структуры осуществляют движение органоидов в цитоплазме.

      Сами по себе микротрубочки нестабильны, способны быстро распадаться и формироваться вновь, время от времени обновляясь.

      Микрофиламенты

      Достаточно важные элементы цитоплазмы. Представляют собой длинные нити из актина (глобулярный белок), которые, переплетаясь друг с другом, формируют общую сеть - цитоскелет. Другое название - микротрабекулярная решетка. Это своего рода особенности строения цитоплазмы. Ведь именно благодаря такому цитоскелету удерживаются вместе все органоиды, они могут смело сообщаться между собой, через них проходят вещества и молекулы, осуществляется метаболизм.

      Однако известно, что цитоплазма - внутренняя среда клетки, которая часто способна менять свои физические данные: становиться более жидкой или вязкой, менять структуру (переход из золя в гель и обратно). В связи с этим микрофиламенты - динамичная, лабильная часть, способная быстро перестраиваться, видоизменяться, распадаться и формироваться вновь.

      Плазматические мембраны

      Важное значение для клетки имеет наличие хорошо развитых и нормально функционирующих многочисленных мембранных структур, что также составляет своего рода особенности строения цитоплазмы. Ведь именно через плазматические мембранные преграды происходит транспорт молекул, питательных веществ и продуктов метаболизма, газов для процессов дыхания и так далее. Именно поэтому большинство органоидов имеет эти структуры.

      Они, подобно сети, располагаются в цитоплазме и отграничивают внутреннее содержимое своих хозяев друг от друга, от окружающей среды. Защищают и предохраняют от нежелательных веществ и бактерий, представляющих угрозу.

      Строение большинства из них сходно - жидкостно-мозаичная модель, рассматривающая каждую плазмалемму как биослой из липидов, пронизанный разными белковыми молекулами.

      Так как функции цитоплазмы в клетке - это в первую очередь транспортное сообщение между всеми ее частями, то наличие мембран у большинства органоидов является одной из структурных частей гиалоплазмы. Комплексно, все вместе, они выполняют общие задачи по обеспечению жизнедеятельности клетки.

      Рибосомы

      Небольшие (до 20 нм) округлые структуры, состоящие из двух половинок - субъединиц. Эти половинки могут существовать как вместе, так и разъединяться на какое-то время. Основа состава: рРНК (рибосомальная рибонуклеиновая кислота) и белок. Основные места локализации рибосом в клетке:


      Функции данных структур заключаются в синтезе и сборке белковых макромолекул, которые расходуются на жизнедеятельность клетки.

      Эндоплазматическая сеть и аппарат Гольджи

      Многочисленная сеть канальцев, трубочек и пузырьков, образующая проводящую систему внутри клетки и расположенная по всему объему цитоплазмы, носит название эндоплазматической сети, или ретикулума. Ее функция соответствует строению - обеспечение взаимосвязи органоидов между собой и транспортировка питательных молекул к органеллам.

      Комплекс Гольджи, или аппарат, выполняет функцию накопления необходимых веществ (углеводов, жиров, белков) в системе специальных полостей. Они ограничены от цитоплазмы мембранами. Также именно данный органоид является местом синтеза жиров и углеводов.

      Пероксисомы и лизосомы

      Лизосомы - небольшие округлые структуры, напоминающие пузырьки, заполненные жидкостью. Они весьма многочисленны и распределены в цитоплазме, где свободно перемещаются внутри клетки. Главная задача их - растворение чужеродных частиц, то есть устранение "врагов" в виде отмерших участков клеточных структур, бактерий и других молекул.

      Жидкое содержимое насыщенно ферментами, поэтому лизосомы принимают участие в расщеплении макромолекул до их мономерных звеньев.

      Пероксисомы - небольшие овальные или круглые органеллы, имеющие одинарную мембрану. Заполнены жидким содержимым, включающим большое количество различных ферментов. Являются одними из основных потребителей кислорода. Свои функции выполняют в зависимости от типа клетки, в которой находятся. Возможен синтез миелина для оболочки нервных волокон, а также могут осуществлять окисление и обезвреживание токсичных веществ и разных молекул.

      Митохондрии

      Данные структуры совершенно не зря называют силовыми (энергетическими) станциями клетки. Ведь именно в них происходит образование главных энергоносителей - молекул аденозинтрифосфорной кислоты, или АТФ. По внешнему виду напоминают фасолину. Мембрана, ограничивающая митохондрию от цитоплазмы, двойная. Внутренняя структура сильно складчатая для увеличения поверхности синтеза АТФ. Складки имеют название кристы, содержат большое количество разных ферментов для катализирования процессов синтеза.

      Больше всего митохондрий имеют мышечные клетки в организмах животных и человека, так как именно они требуют повышенного содержания и расхода энергии.

      Явление циклоза

      Движение цитоплазмы в клетке имеет название циклоза. Оно складывается из нескольких типов:

      • колебательное;
      • ротационное, или круговое;
      • струйчатое.

      Любое движение необходимо для обеспечения ряда важных функций цитоплазмы: полноценного перемещения органоидов внутри гиалоплазмы, равномерного обмена питательными веществами, газами, энергией, выведения метаболитов.

      Циклоз происходит как в растительных, так и в животных клетках, без исключений. Если он прекращается, то организм погибает. Поэтому данный процесс - это еще и показатель жизнедеятельности существ.

      Таким образом, можно сделать вывод о том, что цитоплазма животной клетки, растительной, любой эукариотической - очень динамичная, живая структура.

      Отличие цитоплазмы животной и растительной клетки

      На самом деле отличий немного. Общий план строения, выполняемые функции полностью схожи. Однако некоторые расхождения все же есть. Так, например:


      В остальных отношениях обе структуры идентичны по составу и строению цитоплазмы. Может варьироваться количество тех или иных элементных звеньев, но наличие их обязательно. Поэтому значение цитоплазмы в клетке как растений, так и животных одинаково велико.

      Роль цитоплазмы в клетке

      Значение цитоплазмы в клетке велико, если не сказать, что оно определяющее. Ведь это основа, в которой располагаются все жизненно важные структуры, поэтому переоценить ее роль сложно. Можно сформулировать несколько основных пунктов, раскрывающих это значение.

      1. Именно она объединяет все составные части клетки в одну комплексную единую систему, осуществляющую процессы жизнедеятельности слаженно и совокупно.
      2. Благодаря входящей в состав воде, цитоплазма в клетке выполняет функции среды для многочисленных сложных биохимических взаимодействий и физиологических превращений веществ (гликолиз, питание, газообмен).
      3. Это основная "емкость" для существования всех органоидов клетки.
      4. За счет микрофиламентов и трубочек формирует цитоскелет, связывая органоиды и позволяя им передвигаться.
      5. Именно в цитоплазме сосредоточен ряд биологических катализаторов - ферментов, без которых не происходит ни одна биохимическая реакция.

      Подводя итог, нужно сказать следующее. Роль цитоплазмы в клетке практически ключевая, так как она - основа всех процессов, среда жизни и субстрат для реакций.

    Цитоплазма - все содержимое клетки, за исключением ядра. Ее подразделяют на три части: органеллы (или органоиды), включения и гиалоплазму. Органеллы - обязательные компоненты клеток, а включения - необязательные компоненты (отложения запасных веществ или продуктов метаболизма) - погружены в гиалоплазму - жидкую фазу цитоплазмы клетки. Органеллы бывают двух типов: мембранные и немембранные. Среди мембранных можно выделить одномембранные (плазматическая мембрана, эндоплазматический ретикулюм, аппарат Гольджи, лизосомы и другие вакуоли) и двумембранные органеллы (митохондрии, пластиды, клеточное ядро). К немембранным органеллам относятся рибосомы, микротрубочки, клеточный центр.

    Гиалоплазма (от греч. hyaline - прозрачный), или цитозоль, - это внутренняя среда клетки. Это не просто разбавленный водный раствор, а гель. Гиалоплазма может менять свою вязкость в зависимости от условий и переходить в более жидкое состояние (золь), обеспечивая движение клетки или ее внутриклеточных компонентов. Важнейшая функция гиалоплазмы - объединение всех клеточных структур и обеспечение химического взаимодействия между ними. Через нее осуществляется постоянный поток ионов и часть внутриклеточного транспортирования органических веществ. В ней локализованы , участвующие в синтезе аминокислот, нуклеотидов, жирных кислот, углеводов и происходит их модификация. Здесь синтезируются и откладываются запасные вещества, происходит гликолиз и синтез части АТФ.

    Мембранные компоненты

    Все клеточные мембраны построены по общему принципу. Основным их компонентом являются липиды. Молекулы липидов располагаются в 2 слоя таким образом, что их гидрофобные концы смотрят внутрь, а гидрофильные - наружу. Молекулы белков не образуют сплошных слоев, они могут на разную глубину погружаться в слой липидов. В состав многих мембран входят углеводы, которые локализуются снаружи над липидным слоем. Рост мембран осуществляется за счет включения нового материала в виде готовых замкнутых пузырьков. Синтез компонентов для мембран и их сборка происходят за счет деятельности гранулярного эндоплазматического ретикулюма.

    Плазматическая мембрана, или плазмалемма

    Снаружи клетка ограничена плазмалеммой (или плазматической мембраной) толщиной 10 нм. Она построена по принципу элементарных мембран.

    Функции плазмалеммы: барьерная (ограничивает внутреннее содержимое клетки от внешней среды); транспортная (пассивное транспортирование , низкомолекулярных веществ, активный перенос против градиента концентрации, эндоцитоз); вывод из клеток продуктов, образованных в клетке; сигнальная (на мембране есть рецепторы, узнающие определенные ионы и взаимодействующие с ними); межклеточные взаимодействия у многоклеточных организмов; принимает участие в построении специальных структур, таких, как ворсинки, реснички, жгутики и др.

    Через плазмалемму происходит активное и пассивное транспортирование. Пассивное транспортирование ионов идет по градиенту концентрации, без дополнительной затраты энергии. Растворенные молекулы проходят сквозь мембрану за счет простой диффузии через каналы, образованные транспортными . Активное транспортирование осуществляется с помощью ионных насосов против градиента концентрации с затратой энергии. В отличие от ионов и мономеров, макромолекулы сквозь клеточные мембраны не проходят, и их транспортирование происходит путем эндоцитоза. При эндоцитозе определенный участок плазмалеммы обволакивает внеклеточный материал, образует вакуоль, окруженную мембраной, за счет впячивания плазмалеммы. Внутри вакуоли макромолекулы, части клеток или даже целые клетки перевариваются после слияния с лизосомой. Эндоцитоз бывает двух типов: фагоцитоз и пиноцитоз. При фагоцитозе происходит захват и поглощение крупных частиц. Фагоцитоз встречается у животных, у некоторых водорослей, но его нет у растений, бактерий, грибов, так как их жесткая клеточная стенка препятствует фагоцитозу. Пиноцитоз сходен с фагоцитозом, но при нем поглощается вода и водные растворы.

    Клеточные оболочки

    Клеточная стенка, или оболочка, лежит над цитоплазматической мембраной. У многих клеток и животных она тонкая, состоит из молекул полисахаридов, называется гликокаликсом. Этот слой участвует в создании околоклеточной среды, играет роль фильтра, выполняет роль частичной механической защиты. Есть организмы, например некоторые водоросли, которые не имеют клеточной стенки, их тело покрыто только цитоплазматической мембраной. У прокариотических клеток, клеток грибов и растений снаружи расположена многослойная клеточная стенка (клеточная оболочка). Основу ее составляют полисахариды (у растений - целлюлоза, у бактерий - муреин, у грибов - хитин). Наиболее типичный компонент растительной клеточной стенки - целлюлоза. Она обладает кристаллическими свойствами и в оболочке существует в виде микрофибрилл, из которых формируется каркас оболочки. Этот каркас погружен в матрикс, в состав которого входят полисахариды - гемицеллюлозы и пектины.

    Другой компонент оболочки - лигнин. Этот полимер увеличивает жесткость стенки и содержится в клетках, выполняющих механическую или опорную функцию. В оболочках защитных тканей растений могут откладываться жировые вещества - кутин, суберин, воска. Они предотвращают чрезмерную потерю воды растением.

    Функции клеточной стенки: внешний каркас; защитная; тургор клеток; проводящая (через нее проходит вода, соли и молекулы многих органических веществ).

    Эндоплазматический ретикулюм

    Эндоплазматический ретикулюм (ЭР) - система мелких вакуолей и каналов, соединенных друг с другом в рыхлую сеть (ретикулюм). Существуют два типа ЭР: гладкий и гранулярный (шероховатый). Гранулярный ретикулюм имеет на своих мембранах со стороны гиалоплазмы мелкие (около 20 нм) гранулы. Эти гранулы - рибосомы, связанные с мембранами ЭР.

    Функции ЭР: образование и построение клеточных мембран (на ЭР синтезируются все мембранные белки и липиды мембран); синтез секретируемых белков на рибосомах его мембран; обособление этих белков и их изоляция от основных функционирующих белков клетки; модификация секреторных белков; транспортирование белков в аппарат Гольджи.

    Гладкий ЭР представлен мембранами, образующими мелкие вакуоли и каналы, соединенные между собой, но на Цих нет рибосом. Деятельность гладкого ЭР связана с метаболизмом липидов и некоторых внутриклеточных полисахаридов. В некоторых клетках, например в интерстициальных клетках семенника, гладкий ЭР занимает большую часть объема цитоплазмы, богаты им и клетки сальных желез, в то время как в эпителиальных клетках кишечника гладкий ЭР сконцентрирован только в верхней части клетки. Отмечено, что гладкий и гранулярный ЭР могут находиться в одной и той же клетке и существует непрерывность перехода между ними.

    Аппарат Гольджи

    Аппарат Гольджи (АГ) был открыт в 1898 г. Камилло Гольджи в нервных клетках. В дальнейшем было показано, что эта структура присутствует во всех эукариотических клетках. Обычно АГ располагается вблизи ядра, а в растительных клетках по периферии. АГ представлен мембранными компонентами, собранными вместе. Отдельная зона скопления таких мембран называется диктиосомой. Плоские мембранные мешочки или цистерны, в количестве 5-10 (реже до 20), достаточно плотно упакованы в стопки в диктиосомах. Помимо цистерн в зоне АГ имеется множество вакуолей. В клетках АГ существует в двух формах: диффузной, в виде отдельных диктиосом (такой тип преобладает в растительных клетках), и сетчатой, когда отдельные диктиосомы связаны друг с другом.

    Функции аппарата Гольджи. Основная функция АГ - секреторная. При этом процессе отдельные мелкие пузырьки с готовым продуктом отщепляются от диктиосом. Затем они или разносятся по цитоплазме для внутреннего потребления клетки, или сливаются в секреторные вакуоли. Эти вакуоли двигаются к поверхности клетки, где их мембрана сливается с плазматической и таким образом осуществляется выделение содержимого этих вакуолей за пределы клетки. Этот процесс носит название экзоцитоз.

    АГ осуществляет и накопительную функцию. В его цистернах происходит накопление продуктов, синтезированных в ЭР. Некоторые из этих продуктов, например белки, модифицируются. В АГ также происходит сортировка и пространственное разделение белков.

    В ряде специализированных клеток в АГ происходит синтез полисахаридов. Например, в АГ растительных клеток синтезируются полисахариды, входящие в состав клеточной стенки. АГ растительных клеток также участвует в синтезе и выделении различных слизей.

    АГ является источником лизосом.

    Лизосомы

    Лизосомы образуются за счет активности ЭР и АГ, напоминают секреторные вакуоли. Они покрыты липопротеидной мембраной, в которую встроены белки-переносчики для переноса из лизосом в гиалоплазму продуктов гидролиза. Лизосомы содержат около 40 гидролитических ферментов, работающих в кислой среде, но сами очень устойчивы к этим ферментам. Они участвуют в процессах внутриклеточного расщепления экзогенных и эндогенных макромолекул (белков, нуклеиновых кислот, полисахаридов, липидов), поглощаемых путем пиноцитоза и фагоцитоза. В некоторых случаях, выбрасывая свое содержимое в наружную среду, они могут осуществлять внеклеточное разложение макромолекул. Лизосомы выполняют роль внутриклеточных чистильщиков, переваривая дефектные клеточные органеллы.

    Вакуоли растительных клеток

    Растительные клетки отличаются от животных наличием одной или нескольких крупных вакуолей, которые отделены от цитоплазмы мембраной. Центральная вакуоль образуется за счет слияния и роста мелких пузырьков, отчленяющихся от ЭР. Полость вакуоли заполнена клеточным соком, в состав которого входят неорганические соли, сахара, органические кислоты и их соли, а также ряд высокомолекулярных соединений.

    Функции вакуоли: поддержание тургорного давления клеток; осуществление активного транспортирование различных молекул; накопление запасных веществ и веществ, предназначенных для экскреции.

    Митохондрии

    Митохондрии (от греческого mitos - нить, с chondrion - зернышко) - это энергетические станции клетки, их основная функция связана с окислением органических соединений и использованием освобождающейся энергии для синтеза АТФ. Они имеют форму гранул или нитей. Их размеры и форма очень непостоянны у разных видов. Количество митохондрий на клетку может быть различным у разных организмов: так, гигантские одиночные разветвленные митохондрии встречаются у трипаносом, у некоторых одноклеточных водорослей; с другой стороны, в клетках печени насчитывается около 200 митохондрий, а у некоторых простейших до 500 000. В некоторых клетках митохондрии могут сливаться в одну гигантскую митохондрию, как, например, в спермии млекопитающих имеется спирально закрученная гигантская митохондрия.

    Митохондрии покрыты двумя мембранами. Наружняя мембрана отграничивает митохондрию от гиалоплазмы, ее толщина около 7 нм, она гладкая, без впячиваний и складок. Внутренняя мембрана образует многочисленные впячивания внутрь митохондрии - кристы , которые не полностью перегораживают полость митохондрии. Внутреннее содержимое митохондрии - матрикс . Матрикс имеет тонкозернистое гомогенное строение, в нем располагаются митохондриальные рибосомы и митохондриальная ДНК. Митохондриальные рибосомы по размерам мельче, чем рибосомы цитоплазмы. ДНК в митохондриях имеет кольцевидную форму и не образует связи с гистонами. В матриксе расположены ферменты, участвующие в цикле трикарбоновых кислот, и ферменты окисления жирных кислот. В матриксе также окисляются некоторые аминокислоты. На кристах митохондрий располагается дыхательная цепь (цепь переноса электронов) - система превращения энергии, здесь происходит синтез АТФ.

    Число митохондрий в клетках может увеличиваться за счет их роста и деления. Большая часть белков митохондрий синтезируется вне митохондрий и контролируется ядром, митохондриальная ДНК кодирует лишь немногочисленные митохондриальные белки.

    Пластиды

    Пластиды - органеллы, встречающиеся у фотосинтезирующих организмов (растений, водорослей). Существует несколько типов пластид: хлоропласты, хромопласты, лейкопласты, амилопласты.

    В хлоропластах (от греческого chloros - зеленый и plastos - вылепленный) протекает фотосинтез. Хлоропласты варьируются по форме и размерам у разных организмов. Некоторые из них имеют форму чаши и достаточно крупные, другие - звездчатую форму, форму спирально закрученных лент, кольца, сети и т. д. Такие хлоропласты встречаются у водорослей (у водорослей хлоропласты называются хроматофорами). Более обычные хлоропласты имеют форму округлых зерен или дисков. Их количество на клетку также отличается у разных представителей. Так, у некоторых водорослей только один хлоропласт в клетке, у высших растений в клетке в среднем - 10-30 хлоропластов, хотя встречаются клетки, в которых насчитывается около тысячи хлоропластов. Из-за преобладания хлорофиллов эти пластиды у зеленых, эвгленовых водорослей и высших растений окрашены в зелёный цвет, окраска этих пластид у других водорослей варьируется в зависимости от комбинации и количества дополнительных пигментов.

    Хлоропласт ограничен двумя мембранами, внешней и внутренней, каждая толщиной 7 нм. Внутренняя мембрана образует впячивания внутрь матрикса. В матриксе хлоропласта сосредоточено большое количество мембран, имеющих форму плоских пузырьков, называемых тилакоидами (от греческого thylaros - мешок). В эти мембраны встроены пигменты - хлорофиллы и каротиноиды. Тилакоиды у высших растений собраны в стопки, наподобие столбика монет, которые называются гранами . На мембранах тилакоидов проходит световая фаза фотосинтеза, в эти мембраны помимо хлорофиллов и каротиноидов встроены молекулярные комплексы АТФ-синтетазы, которые переносят протоны в матрикс хлоропласта и участвуют в синтезе АТФ.

    С матриксом (стромой) связана темновая фаза фотосинтеза, так Как в нем содержатся ферменты, участвующие в темновых реакциях связывания атмосферного углекислого газа и образования углеводов. В строме хлоропластов, помимо этого, происходит образование жирных кислот и аминокислот. В матриксе хлоропласта находится пластидная ДНК, разные типы РНК, рибосомы и откладывается запасной продукт - крахмал. ДНК хлоропластов, как и ДНК митохондрий, отличается от ДНК ядра. По своим характеристикам она близка к ДНК прокариот, представлена кольцевой молекулой, не связана с гистонами. Рибосомы в хлоропластах, так же как и рибосомы в митохондриях, меньше рибосом цитоплазмы. И так же как в митохондриях, основная масса белков хлоропласта контролируется ядерной ДНК. Таким образом, как и митохондрии, хлоропласты - структуры с ограниченной автономией.

    У водорослей новые хлоропласты образуются при делении зрелых. У высших растений такое деление встречается достаточно редко. Увеличение числа пластид, в том числе и хлоропластов, у высших растений происходит за счет превращения предшественников - пропластид (от греческого рго - перед, раньше). Пропластиды встречаются в меристематических тканях, в точках роста растений. Пропластиды - это мелкие (0,4-1 мкм) двумембранные пузырьки, с недифференцированным содержимым. Внутренняя мембрана может образовывать небольшие складки. Пропластиды размножаются делением. При нормальном освещении пропластиды преобразуются в хлоропласты.

    Лейкопласты (от греческого leuros - белый, бесцветный) - бесцветные пластиды; в отличие от хлоропластов, у них менее дифференцировано внутреннее содержимое, в строме не развита система мембран. Встречаются они у растений в запасающих тканях. Их часто трудно отличить от пропластид. В темноте в них откладываются запасные вещества, в том числе и крахмал. На свету они могут превращаться в хлоропласты. В эндосперме семян, в корневищах и клубнях накопление крахмала в лейкопластах приводит к образованию амилопластов (от греческого amylon - крахмал), у которых строма заполнена гранулами крахмала.

    Хромопласты (от греческого chroma - цвет) - пластиды, окрашенные у высших растений в желтый, оранжевый и красный цвета, что связано с накоплением каротиноидных пигментов. Эти пластиды образуются из хлоропластов (при старении листьев, развитии лепестков цветков, созревании плодов) и реже из лейкопластов (например, в корнеплоде моркови). При этом уменьшается число мембран, исчезает хлорофилл и крахмал и накапливаются каротиноиды.

    Немембранные компоненты

    Рибосома

    Рибосома - клеточный немембранный органоид, на котором происходит синтез белка в клетке. Рибосомы расположены на мембранах гранулированного ЭР, в цитоплазме и в ядре. В состав рибосом входят молекулы неповторяющихся белков и несколько молекул рРНК. Рибосомы прокариот и эукариот обладают общими принципами организации и функционирования, но они отличаются по своим размерам и молекулярным характеристикам.

    Рибосома состоит из двух неравных субъединиц - большой и малой. У прокариотических клеток они названы 5OS и 3OS субъединицы, у эукариотических клеток - 6OS и 4OS. S - коэффициент седиментации (лат. sedimentum - осадок), который характеризует скорость осаждения частицы при ультрацентрифугировании и зависит от молекулярной массы и пространственной конфигурации частицы. 3OS субъединица содержит 1 молекулу 168 рРНК и 21 белковую молекулу, 5OS субъединица содержит 2 молекулы РНК (5S и 23S) и 34 белковые молекулы. Субъединицы рибосом эукариот содержат большее количество белков (около 80) и молекул рРНК. В митохондриях и хлоропластах также имеются рибосомы, которые близки к рибосомам прокариот.

    Опорно-двигательная система (цитоскелет)

    Понятие о цитоскелете было высказано в начале XX века выдающимся русским ученым Н. К. Кольцовым, и только с помощью электронного микроскопа эта система была переоткрыта. Цитоскелет состоит из нитевидных неветвящихся белковых комплексов - филаментов . Выделяют три системы филаментов, которые различаются по химическому составу, ультраструктуре и функциям, - микрофиламенты (например, в мышечных клетках), микротрубочки (много в пигментных клетках) и промежуточные филаменты (например, в клетках эпидермиса кожи). Цитоскелет принимает участие в процессах движения внутри клетки или самих клеток и выполняет каркасную скелетную роль. Он отсутствует у прокариот.

    Микрофиламенты имеют диаметр 6 нм и состоят в основном из белка актина, при полимеризации которого образуется тонкая фибрилла в виде пологой спиральной ленты. Вместе с белком миозином он входит в состав сократимых фибрилл - миофибрилл. Микрофиламенты встречаются во всех клетках эукариот. В немышечных клетках они могут быть частью сократительного аппарата и участвовать в образовании жестких скелетных структур. Многие эпителиальные клетки густо покрыты выростами цитоплазматической мембраны - микроворсинками, внутри которых расположен плотный пучок из 20-30 актиновых филаментов, который придает жесткость и прочность микроворсинкам.

    Микротрубочки имеют диаметр 25 нм и состоят в основном из белка тубулина, который при полимеризации формирует полые трубки. Микротрубочки встречаются в цитоплазме интерфазных клеток поодиночке, пучками или в составе центриолей, базальных телец, в ресничках и жгутиках, входят в состав веретена деления. Микротрубочки - динамичные структуры и могут быстро формироваться и разбираться. Их функция - скелетная и двигательная.

    Нет принципиальной разницы в тонкой организации ресничек и жгутиков. У животных реснички характерны для клеток реснитчатого эпителия, их численность может достигать 10-14 тысяч на клетку у туфельки. Жгутики встречаются у гамет водорослей, сперматозоидов животных, спор бесполого размножения водорослей, некоторых грибов, мхов, папоротников и др. Ресничка и жгутик представляют вырост цитоплазмы, покрытый цитоплазматической мембраной. Внутри него расположена аксонема, состоящая из 9 дуплетов микротрубочек по периферии и пары микротрубочек в центре. Нижняя часть жгутика и реснички погружена в цитоплазму - базальное тельце , состоящее из 9 триплетов микротрубочек. Базальное тельце и аксонема составляют единое целое. В основании ресничек и жгутиков часто встречаются пучки микрофибрилл и микротрубочек - корешки.

    Промежуточные филаменты имеют диаметр около 10 нм и образуются из разных, но родственных белков. Это самые стабильные и долгоживущие цитоскелета. Они локализованы преимущественно в околоядерной зоне и в пучках фибрилл, отходящих к периферии клеток. Особенно много их в клетках, подверженных механическим воздействиям.

    Клеточный центр

    Клеточный центр - структура цитоплазмы, которая является источником роста микротрубочек, своеобразный центр их организации. Под клеточным центром понимают совокупность центриолей и центросферы . Центриоли обычно располагаются в геометрическом центре клетки. Эти структуры обязательны для клеток животных, а также встречаются у некоторых водорослей, отсутствуют у высших растений, ряда простейших и грибов. В делящихся клетках они принимают участие в формировании веретена деления. Центриоли состоят из 9 триплетов микротрубочек, образующих полый цилиндр шириной около 0,15 мкм, длиной - 0,3-0,5 мкм. В интерфазных клетках присутствуют 2 центриоли. Центросфера окружает центриоли и представляет собой совокупность дополнительных структур: исчерченные волокнистые корешки, дополнительные микротрубочки, фокусы схождения микротрубочек. В центросфере микротрубочки радиально расходятся от зоны центриоли.

    Цитоплазматическая, или клеточная, мембрана (плазмалемма) - это биологическая мембрана, окружающая протоплазму (цитоплазму) живой клетки. В основе строения лежит двойной слой липидов - во­донерастворимых молекул, имеющих полярные «головки» и длинные неполярные «хвосты», представленные цепями жирных кислот; больше всего в мембранах содержится фосфолипидов, в головках ко­торых имеются остатки фосфорной кислоты.

    Хвосты липидных моле­кул обращены друг к другу, полярные головки смотрят наружу, обра­зуя гидрофильную поверхность. С заряженными головками соединяются белки, которые называют периферическими мембран­ными белками. Другие белковые молекулы могут быть погружены в слой липидов за счет взаимодействия с их неполярными хвостами. Часть белков пронизывает мембрану насквозь, образуя каналы или поры. У некоторых клеток мембрана является единственной структу­рой, служащей оболочкой, у других клеток поверх мембраны имеется дополнительная оболочка (например, целлюлозная оболочка у расти­тельных клеток). Животные клетки снаружи от мембраны бывают по­крыты гликокаликсом - тонким слоем, состоящим из белков и поли­сахаридов.

    Клеточная мембрана выполняет множество важных функций, от которых зависит жизнедеятельность клеток. Одна из них заключается в образовании барьера между внутренним содержимым клетки и внешней средой. Наряду с этим мембрана обеспечивает обмен ве­ществ между цитоплазмой и внешней средой, из которой в клетку че­рез мембрану поступают вода, ионы, неорганические и органические молекулы. Во внешнюю среду через мембрану выводятся продукты, образованные в клетке (продукты обмена и вещества, синтезирован­ные в клетке).

    Таким образом, через мембрану осуществляется транспорт ве­ществ. Крупные молекулы биополимеров поступают через мембрану благодаря фагоцитозу - явлению, впервые описанному И.И. Мечни­ковым. Процесс захвата и поглощения капелек жидкости происходит путем пиноцитоза. Важную роль в жизнедеятельности клетки играет рецепторная функция мембраны. В мембранах имеется большое чис­ло рецепторов - специальных белков, роль которых заключается в передаче сигналов извне внутрь клетки.

    Клеточное ядро - это окруженная оболочкой, состоящей из двух мембран, часть клетки диаметром 3-10 мкм. Между наружной и внут­ренней мембранами есть узкое пространство (30 нм), заполненное по­лужидким веществом. Ядерная мембрана имеет такое же строение, как и плазматическая мембрана. В ядерной оболочке есть множество пор, через которые идет процесс обмена веществ между ядром и ци­топлазмой. Под ядерной оболочкой находится ядерный сок (карио­плазма), в котором содержатся ядрышки и хромосомы.

    Ядрышки - это округлые тельца диаметром от 1 мкм до несколь­ких мкм. В ядре может быть несколько ядрышек. В состав ядрышек входят РНК и белок. Ядрышки образуются на определенных участках хромосом; в них синтезируется рибосомальная РНК (рРНК). В яд­рышках происходит формирование больших и малых субъединиц ри­босом. Ядрышки видны только в неделящихся клетках.

    Хромосомы (гр. хрома - краска и сома - тело) были так названы в связи со способностью к интенсивному окрашиванию - важней­ший органоид ядра, содержащий ДНК в комплексе с основным бел­ком - гистоном. Этот комплекс составляет около 90% вещества хро­мосом.

    Хромосомы могут иметь длину, в десятки и сотни раз превышающую диаметр ядра. В интерфазу (период между делениями) хромосомы видны только под электронным микроскопом и представ­ляют собой длинные тонкие нити, именуемые хроматином (деспира- лизованное состояние хромосом). В этот период идет процесс удвое­ния (редупликации) хромосом; в конце интерфазы каждая хромосома состоит из двух хроматид. Каждая хромосома имеет первичную перетяжку, на которой расположена центромера; перетяжка делит хромосому на два плеча одинаковой или разной длины. Центромера служит местом прикрепления нити веретена деления. У ядрышковых хромосом имеется еще вторичная перетяжка, где формируется ядрышко.

    Функция хромосом заключается в контроле над всеми процессами жизнедеятельности клетки. Хромосомы являются носителями генов, то есть носителями генетической информации. Наследственная ин­формация передается путем репликации молекулы ДНК. Число, раз­мер и форма хромосом строго определены и специфичны для каждого вида.

    В половых клетках и в спорах у растений имеется одинарный (га­плоидный) набор хромосом, в соматических клетках - двойной (ди­плоидный) набор. Бывают также полиплоидные клетки. Различают гомологичные (парные, соответствующие) и негомологичные хромо­сомы. Хромосомы, определяющие развитие пола, называют половы­ми. Остальные хромосомы называют аутосомами.

    Цитоплазма (гр. цитос - клетка и плазма - вылепленная) - живое содержимое клетки, кроме ядра. Состоит из мембран и орга­ноидов (ЭПС, рибосом, митохондрий, пластид, аппарата Гольджи, ли- зосом, центриолей и др.), пространство между которыми заполнено коллоидным раствором - гиалоплазмой. Снаружи цитоплазма огра­ничена клеточной мембраной, внутри - мембраной ядерной оболоч­ки. У растительных клеток имеется еще и внутренняя пограничная мембрана, отделяющая клеточный сок и образующая вакуоль.

    Цитоплазма содержит большое количество воды с растворенными в ней солями и органические вещества. Цитоплазма - это среда для внутриклеточных физиологических и биохимических процессов. Она способна к движению - круговому, струйчатому, ресничному.

    Эндоплазматическая сеть (ЭПС), или эндоплазматический рети­кулум (ЭПР), - это сеть каналов, пронизывающая всю цитоплазму. Стенки этих каналов представляют собой мембраны, контактирую­щие со всеми органоидами клетки. ЭПС и органоиды вместе состав­ляют единую внутриклеточную систему, которая осуществляет обмен веществ и энергии в клетке и обеспечивает внутриклеточный транс­порт веществ. Различают гладкую и гранулярную ЭПС. Гранулярная ЭПС состоит из мембранных мешочков (цистерн), покрытых рибосо­мами, благодаря чему она кажется шероховатой (шероховатая ЭПС). ЭПС может быть и лишена рибосом (гладкая ЭПС); ее строение бли­же к трубчатому типу. На рибосомах гранулярной сети синтезируют­ся белки, которые затем поступают внутрь каналов ЭПС, где и приоб­ретают третичную структуру. На мембранах гладкой ЭПС синтези­руются липиды и углеводы, которые также поступают внутрь каналов ЭПС.

    ЭПС выполняет следующие функции: участвует в синтезе органи­ческих веществ, транспортирует синтезированные вещества в аппарат Гольджи, разделяет клетку на отсеки. Кроме того, в клетках печени ЭПС участвует в обезвреживании ядовитых веществ, а в мышечных клетках играет роль депо кальция, необходимого для мышечного со­кращения.

    ЭПС имеется во всех клетках, исключая бактериальные клетки и эритроциты; она составляет от 30 до 50% объема клетки.

    Комплекс (аппарат) Гольджи - это сложная сеть полостей, тру­бочек и пузырьков вокруг ядра. Состоит из трех основных компонен­тов: группы мембранных полостей, системы трубочек, отходящих от полостей, и пузырьков на концах трубочек. Комплекс Гольджи вы­полняет следующие функции: в полостях накапливаются вещества, которые синтезируются и транспортируются по ЭПС; здесь они под­вергаются химическим изменениям. Модифицированные вещества упаковываются в мембранные пузырьки, которые выбрасываются клеткой в виде секретов. Кроме того, пузырьки используются клеткой в качестве лизосом.

    Лизосомы {гр. лизио - растворять, сома - тело) - это неболь­шие пузырьки диаметром порядка 1 мкм, ограниченные мембраной и содержащие комплекс ферментов, который обеспечивает расщепле­ние жиров, углеводов и белков. Они участвуют в переваривании час­тиц, попавших в клетку в результате эндоцитоза, и в удалении отми­рающих органов (например, хвоста у головастиков), клеток и органоидов. При голодании лизосомы растворяют некоторые орга­ноиды, не убивая при этом клетку. Образование лизосом идет в ком­плексе Гольджи.

    Митохондрии {гр. митос - нить и хондрион - гранула) - внут­риклеточные органоиды, оболочка которых состоит из двух мембран. Наружная мембрана - гладкая, внутренняя образует выросты, назы­ваемые кристами. Внутри митохондрии находится полужидкий мат­рикс, который содержит РНК, ДНК, белки, липиды, углеводы, фер­менты, АТФ и другие вещества; в матриксе имеются также рибосомы.

    Размеры митохондрий от 0,2-0,4 до 1-7 мкм. Количество зависит от вида клетки, например, в клетке печени может быть 1000-2500 мито­хондрий. Митохондрии могут быть спиральными, округлыми, вытя­нутыми, чашевидными и т.д.; могут также менять форму.

    Функции митохондрий связаны с тем, что на внутренней мембра­не находятся дыхательные ферменты и ферменты синтеза АТФ. Бла­годаря этому митохондрии обеспечивают клеточное дыхание и синтез АТФ.

    Митохондрии могут сами синтезировать белки, так как в них есть собственные ДНК, РНК и рибосомы. Размножаются митохондрии де­лением надвое.

    По своему строению митохондрии напоминают клетки прокариот; в связи с этим предполагают, что они произошли от внутриклеточных аэробных симбионтов. Митохондрии имеются в цитоплазме клеток большинства растений и животных.

    Хлоропласты относятся к пластидам - органоидам, присущим только растительным клеткам. Это зеленые пластинки диаметром 3- 4 мкм, имеющие овальную форму. Хлоропласты, как и митохондрии, имеют наружную и внутреннюю мембраны. Внутренняя мембрана образует выросты - тилакоиды, тилакоиды образуют стопки - гра­ны, которые объединяются друг с другом внутренней мембраной. В одном хлоропласте может быть несколько десятков гран. В мембра­нах тилакоидов находится хлорофилл, а в промежутках между грана­ми в матриксе (строме) хлоропласта находятся рибосомы, РНК и ДНК. Рибосомы хлоропластов, как и рибосомы митохондрий, синте­зируют белки. Основная функция хлоропластов - обеспечение про­цесса фотосинтеза: в мембранах тилакоидов идет световая фаза, а в строме хлоропластов - темновая фаза фотосинтеза. В матриксе хло­ропластов видны гранулы первичного крахмала, то есть крахмала, синтезированного в процессе фотосинтеза из глюкозы. Хлоропласты, как и митохондрии, размножаются делением. Таким образом, в мор­фологической и функциональной организации митохондрий и хлоро­пластов есть общие черты. Основная характеристика, объединяющая эти органоиды, это то, что они имеют собственную генетическую ин­формацию и синтезируют собственные белки.

    Клеточный центр относится к немембранным компонентам клет­ки. В состав его входят микротрубочки и две центриоли. Центриоли находятся в середине центра организации микротрубочек. Центриоли

    обнаружены не во всех клетках, имеющих клеточный центр (напри­мер, их нет у покрытосеменных растений). Каждая центриоль - это цилиндр размером около 1 мкм, по окружности которого расположе­ны девять триплетов микротрубочек. Центриоли располагаются под прямым углом друг к другу. Клеточный центр играет важную роль в организации цитоскелета, так как цитоплазматические микротрубоч­ки расходятся во все стороны из этой области. Перед делением цен­триоли расходятся к противоположным полюсам клетки, и возле каж­дой из них возникает дочерняя центриоль. От центриолей протягиваются микротрубочки, которые образуют митотическое ве­ретено деления. Часть нитей веретена прикрепляется к хромосомам. Формирование нитей веретена происходит в профазе.

    Рибосомы - это субмикроскопические органоиды диаметром 15- 35 нм, которые были открыты во всех клетках с помощью электрон­ного микроскопа. В каждой клетке может быть несколько тысяч ри­босом. Рибосомы могут быть ядерного, митохондриального и пла- стидного происхождения. Большая часть образуется в ядрышке ядра в виде субъединиц (большой и малой) и затем переходит в цитоплазму. Мембран нет. В состав рибосом входят рРНК и белки. На рибосомах идет синтез белков. Большая часть белков синтезируется на шерохо­ватой ЭПС; частично синтез белков идет на рибосомах, находящихся в цитоплазме в свободном состоянии. Группы из нескольких десятков рибосом образуют полисомы.

    К клеточным органоидам движения относят реснички и жгу­тики - выросты мембраны диаметром около 0,25 мкм, содержащие в середине микротрубочки. Такие органоиды имеются у многих клеток (у простейших, одноклеточных водорослей, зооспор, сперматозоидов, в клетках тканей многоклеточных животных, например, в дыхатель­ном эпителии).

    Функция этих органоидов заключается или в обеспечении движе- . ния (например, у простейших), или в продвижении жидкости вдоль поверхности клеток (например, в дыхательном эпителии для продви­жения слизи).

    Клетки могут передвигаться также с помощью образования лож­ноножек (псевдоподий; например, амебы и лейкоциты), но псевдопо­дии - временные образования, которые не относят к органоидам дви­жения.

    Клеточные включения - это непостоянные структуры клетки. К ним относятся капли и зерна белков, углеводов, жиров, а также кри­сталлические включения - органические кристаллы, которые могут образовывать в клетках белки, вирусы, соли щавелевой кислоты и т.д., и неорганические кристаллы, образованные солями кальция. В отличие от органоидов эти включения не имеют мембран или элементов цитоскелета и периодически синтезируются и расхо­дуются.

    Капли жира используются как запасное вещество в связи с его вы­сокой энергоемкостью; зерна углеводов в виде крахмала у растений и в виде гликогена у животных и грибов - как источник энергии для образования АТФ; зерна белка - как источник строительного мате­риала, соли кальция - для обеспечения процесса возбуждения, обме­на веществ и т.д.

    Выберите один правильный ответ.

    В клетках растений, грибов и бактерий клеточная стенка состоит

    1) только щ белков 3) из белков и липидов

    2) только из липидов 4) из полисахаридов

    Гликокаликс - это наружный слой клеток

    1) животных

    2) всех прокариот

    Двумембранное строение имеют

    1) митохондрии

    2) лизосомы

    Пластиды имеются в клетках

    1) всех растений

    2) только животных

    Хлоропласты - это органоиды клетки, в которых

    1) происходит клеточное дыхание

    2) осуществляется процесс фотосинтеза

    3) находятся пигменты красного и желтого цвета

    4) накапливается вторичный крахмал

    6. В митохондриях происходит

    1) накопление синтезируемых клеткой веществ

    2) клеточное дыхание с запасанием энергии

    3) формирование третичной структуры белка

    4) темновая фаза фотосинтеза

    7. Шероховатой эндоплазматической сетью называется такая сеть, на стенках которой находится много

    1) митохондрий 3) рибосом

    2) лизосом 4) лейкопластов

    8. На мембранах агранулярной эндоплазматической сети проис­ходит синтез

    1) АТФ 3) нуклеиновых кислот

    2) углеводов 4) белков

    9. Функция комплекса Гольджи заключается в

    1) (накоплении белков для последующего выведения

    2) синтезе белков и последующем их выведении

    3) накоплении белков для последующего расщепления

    4) синтезе белков и последующем их расщеплении

    10. Пищеварительные ферменты содержатся в

    1) рибосомах 3) митохондриях

    2) лизосомах 4) лейкопластах

    11. Л изосомы участвуют в

    1) транспорте веществ, синтезированных в клетке

    2) накоплении, химической модификации и упаковке синтези­рованных в клетке веществ

    3) синтезе белков

    4) удалении отживших органоидов клетки

    12. Клеточный центр участвует в

    1) синтезе АТФ

    2) хранении генетической информации

    3) формировании веретена деления

    4) синтезе рибосом

    13. Основными структурами клеточного центра являются

    1) тилакоиды 3) центриоли

    2) граны 4) мембранные пузырьки

    14. Ядрышко участвует в

    1) энергетическом обмене

    2) синтезе рибосом

    3) организации деления клетки

    4) транспорте синтезированных в клетке веществ

    15. Хромосомы состоят из

    1) ДНК 3) РНК

    2) ДНК и белков 4) РНК и белков

    Выберите три правильных ответа.

    16. Мембранными клеточными органоидами являются

    1) лизосомы

    2) рибосомы

    3) эндоплазматическая сеть

    4) центриоли

    5) комплекс Гольджи

    6) микротрубочки цитоскелета

    17. Эндоплазматическая сеть

    1) является источником клеточных лизосом

    2) участвует в синтезе органических соединений

    3) обеспечивает транспорт веществ

    4) делит клетку на отдельные отсеки

    5) формирует рибосомы

    6) обеспечивает удаление отмирающих органоидов клетки

    18. Плазмалемма

    1) является барьером между цитоплазмой клетки и внешней средой

    2) обеспечивает транспорт аминокислот к месту синтеза белка

    3) обеспечивает избирательный транспорт веществ в клетку

    4) участвует в межклеточных взаимодействиях

    5) служит депо запасных питательных веществ

    6) участвует в накоплении и химической модификации ве­ществ, синтезированных в клетке

    19. Рибосомы

    1) окружены двойной мембраной

    2) находятся на поверхности шероховатой эндоплазматиче­ской сети

    3) состоят из двух субъединиц

    4) осуществляют внутриклеточное пищеварение

    5) формируют веретено деления

    6) участвуют в синтезе белка

    20. Ядерная оболочка

    1) имеет толщину около 30 нм

    2) отделяет ядро от цитоплазмы

    3) является непроницаемой для молекул нуклеиновых кислот

    4) состоит из двух мембран

    5) пронизана порами

    6) не содержит фосфолипидов

    21. Установите соответствие между органоидом клетки и функци­ей, которую он выполняет.


    Ключи к заданиям

    № вопроса 1 2 3 4 5 6 7 8 9 10
    ответ 4 1 1 1 2 2 3 2 1 2
    № вопроса 11 12 13 14 15 16 17 18 19 20
    ответ 4 3 3 2 2 1,3,5 2,3,4 1,3,4 2,3,6 2,4,5

    Задание 21
    1 2 3 4 5 6
    А Б В А А В

    Статьи по теме