Растения-ГМО: практическое применение. Физиолого-биохимические основы устойчивости высших растений к патогенным микроорганизмам. Пути повышения устойчивости растений к инфекционным заболеваниям

По отношению к любым патогенам в настоящее время различают целый ряд типов устойчивости. Устойчивость может быть абсолютной - в этом случае говорят об иммунитете, высокой, средней, слабой.

Степень устойчивости определяется по величине и характеру поражений, а также по скорости развития болезни.

Большинство растений успешно противостоит многочисленным патогенным организмам, таким, как грибы, бактерии, вирусы, микомицеты.

В настоящее время принято выделять два типа иммунитета - конститутивный и индуцибельный, или, по Вавилову (4), соответственно морфологический (пассивный) и физиологический (активный). К первому из них относят все случаи устойчивости, связанные с механическими особенностями в строении и развитии органов растений, а также с синтезом компонентов вторичного метаболизма, препятствующих проникновению в растение патогенов, например, толстая кутикула, густое опушение, размер и форма устьиц, восковой налёт, эфирные масла, предварительное образование антибиотических соединений, содержащихся в здоровых растениях и др. (77).

Так, наличие алкалоидов в растениях диких и ряда культурных видов люпина способствует их защите от ряда вредителей и болезней: антипитательные соединения белковой и небелковой природы - лектины, танины, гликозиды и др., содержащиеся в семенах большинства зерновых бобовых культур, являются естественными барьерами для развития ряда болезней и вредителей.

Индуцибельная устойчивость обусловлена реакцией хозяина в ответ на внедрение патогена. Самым ярким проявлением активной устойчивости является реакция сверхчувствительности (СВЧ) - быстрое отмирание зараженных клеток, ограничивающее распространение возбудителей и последующую их гибель. Реакция может быть очень быстрой, а микротическое пятно на поверхности листа ничтожно малым. Механизм сверхчувствительности заключается в том, что в ответ на внедрение патогена в клетках образуются вещества, токсичные и для возбудителей болезни и для клеток хозяина. Токсины, образуемые растением-хозяином представляют из себя низкомолекулярные вещества, получившие название фитоалексинов. Известны фитоалексины - пизатин у гороха, фазеолин у фасоли и др. Активная устойчивость может быть обусловлена быстрым отложением инкрустирующих веществ (каллеза, лигнина) на стенках клетки, в которую патоген пытается внедрится.

Различают устойчивость качественную - при этом распределение частот устойчивых и восприимчивых растений в популяции дискретно и их нетрудно идентифицировать, и количественную, при которой наблюдается непрерывная шкала переходов от устойчивости к восприимчивости и нет между ними четких переходов.

Кроме сверхчувствительности к механизмам устойчивости относятся: уход от болезни, связанный с низкой всхожестью спор на поверхности листьев; слабое обоснование гриба в растении-хозяине; медленный рост гриба в растении-хозяине вследствие наличия антибиотических веществ или отсутствия питательных веществ для патогена в клетках хозяина; устойчивость к споруляции, вызывающая ее задержку; выносливость, при которой у зараженных растений отмечается лишь незначительное замедление роста или деформации листьев.

К насекомым у растений различают три основных типа устойчивости: отсутствие предпочтения - насекомые менее охотно заселяют одни генотипы, чем другие; антибиоз - замедление роста отдельных вредных насекомых и снижение скорости их размножения; выносливость - противостояние последействиям нашествия насекомых (1).

При описании различных фенотипов и генотипов возбудителей болезней и вредителей в данной работе мы будем придерживаться, в основном, терминов, используемых Расселом (1982) в его обширной монографии „Селекция растений и устойчивость к вредителям и болезням“ (18).

Вирулентная физиологическая раса грибного возбудителя - это раса, несущая гены, которые преодолевают устойчивость конкретного генотипа хозяина, превращая его в восприимчивый; авирулентная раса неспособна поражать данный генотип.

Вирулентные штаммы бактерий и вирусов обуславливают более сильные признаки болезни, чем авирулентные.

Агрессивная или сильная раса гриба во многом эквивалентна вирулентному штамму вируса, вызывая сильное поражение всех генотипов хозяина, которые она способна поражать и не связана с расо-специфической устойчивостью.

Этими терминами нужно пользоваться осторожно, так как иногда не удается испытать сорт или селекционный материал против всех вариантов патогена. Более подробно генетическая природа обоих типов устойчивости рассмотрена в статье - „

МЕХАНИЗМЫ УСТОЙЧИВОСТИ РАСТЕНИЙ

12.1. Физиология стресса

Неблагоприятные факторы внешней среды называют стрессорами, а реакцию организма на отклонения от нормы стрессом (напряжением). Для растений характерны три фазы стресса: 1) первичная стрессовая реакция, 2) адаптация, 3) истощение. Действие стрессора зависит от величины повреждающего фактора, длительности его воздействия и сопротивляемости растения. Устойчивость растений к стрессору зависит и от фазы онтогенеза. Наиболее устойчивы растения, находящиеся в состоянии покоя. Наиболее чувствительны растения в молодом возрасте.

К первичным неспецифическим процессам, происходящим в клетках растений при действии любых стрессоров, относятся следующие:

1. Повышение проницаемости мембран, деполяризация мембранного потенциала плазмалеммы.

2. Вход ионов кальция в цитоплазму из клеточных стенок и внутриклеточных компартментов (вакуоль, эндоплазматическая сеть, митохондрии).

3. Сдвиг рН цитоплазмы в кислую сторону.

4. Активация сборки актиновых микрофиламентов цитоскелета, в результате чего возрастает вязкость и светорассеяние цитоплазмы.

5. Усиление поглощения кислорода, ускоренная трата АТФ, развитие свободнорадикальных процессов.

6. Повышение содержания аминокислоты пролина, которая может образовывать агрегаты, ведущие себя как гидрофильные коллоиды и способствующие удержанию воды в клетке. Пролин может связываться с белковыми молекулами, защищая их от денатурации.

7. Активация синтеза стрессовых белков.

8. Усиление активности протонной помпы в плазмалемме и, возможно, в тонопласте, препятствующей неблагоприятным сдвигам ионного гомеостаза.

9. Усиление синтеза этилена и абсцизовой кислоты, торможение деления и роста, поглотительной активности клеток и других физиологических процессов, осуществляющихся в обычных условиях.

Кроме того, стрессоры оказывают и специфическое воздействие на клетки. В невысоких дозах повторяющиеся стрессы приводят к закаливанию организма, причем закаливание к одному стрессору способствует повышению устойчивости организма и другим повреждающим факторам.

На организменном уровне сохраняются все клеточные механизмы адаптации и дополняются новыми, отражающими взаимодействие органов в целом растении. Прежде всего, это конкурентные отношения за физиологически активные вещества и пищу. Это позволяет растениям в экстремальных условиях сформировать лишь такой минимум генеративных органов, которые они в состоянии обеспечить необходимыми веществами для созревания. При неблагоприятных условиях ускоряются процессы старения и опадения нижних листьев, а продукты гидролиза их органических соединений используются для питания молодых листьев и формирования генеративных органов. Растения способны замещать поврежденные или утраченные органы путем регенерации и роста пазушных почек. Во всех этих процессах коррелятивного роста участвуют межклеточные системы регуляции (гормональная, трофическая и электрофизиологическая).

В условиях длительного и сильного стресса в первую очередь гибнут неустойчивые растения. Они устраняются из популяции, а семенное потомство образуют более устойчивые растения. В результате общий уровень устойчивости в популяции возрастает. Таким образом, на популяционном уровне включается отбор, приводящий к появлению более приспособленных организмов и новых видов.

12.2. Засухоустойчивость и устойчивость к перегреву

Действие засухи в первую очередь приводит к уменьшению в клетках свободной воды, что влияет на гидратные оболочки белков и функционирование ферментов. При длительном завядании активируются гидролитические процессы, что ведет к увеличению содержания в клетках низкомолекулярных белков и углеводов. Под влиянием засухи в листьях снижается количество РНК вследствие уменьшения ее синтеза и активации рибонуклеаз. В цитоплазме наблюдается распад полисом. Изменения, касающиеся ДНК, происходят лишь при длительной засухе. Из-за уменьшения свободной воды возрастает концентрация вакуолярного сока. При обезвоживании у растений, не приспособленных к засухе, значительно усиливается интенсивность дыхания, а затем снижается. У засухоустойчивых растений в этих условиях существенных изменений дыхания не наблюдается.

В условиях водного дефицита быстро тормозятся клеточное деление и растяжение, что приводит к образованию мелких клеток и замедлению роста растений. Скорость роста корней в начале засухи увеличивается и снижается лишь при длительном недостатке воды в почве. При засухе в корнях ускоряется дифференцировка клеток и происходит опробковение и суберинизация экзодермы.

Во время засухи наряду с обезвоживанием происходит перегрев растений. Высокая температура увеличивает концентрацию клеточного сока и проницаемость клеточных мембран. В результате выхода веществ, растворенных в клеточном соке, постепенно снижается осмотическое давление. Однако при температуре выше 35 о С осмотическое давление повышается из-за усиления гидролиза крахмала и белков, что приводит к увеличению содержания моносахаров, аминокислот и аммиака. Аммиак токсичен для клеток неустойчивых к перегреву растений. У жаростойких растений наблюдается рост содержания органических кислот, связывающих избыточный аммиак. При действии высоких температур в клетках растений индуцируется синтез стрессовых белков теплового шока. В ядре эти белки образуют гранулы, связывая ДНК и блокируя экспрессию генов. После прекращения стресса гранулы распадаются и экспрессия генов восстанавливается. Один из белков теплового шока стабилизирует плазмалемму.

Засухоустойчивость сельскохозяйственных растений повышается в результате предпосевного закаливания семян, которые перед посевом после однократного намачивания вновь высушиваются.

12.3. Устойчивость растений к низким температурам

Растения различных мест обитания имеют неодинаковую устойчивость к низким температурам. Так, многие растения Крайнего Севера без особого вреда зимой переносят охлаждение до -60 о С. Большинство теплолюбивых растений южного происхождения плохо переносит низкие положительные температуры. Например, хлопчатник гибнет в течение суток при 1-3 о С. Поэтому устойчивость растений к низким температурам подразделяют на холодостойкость или устойчивость теплолюбивых растений и растений умеренной зоны к низким положительным температурам и морозоустойчивость или способность растений переносить температуру ниже 0 о С.

У теплолюбивых растений при низких положительных температурах происходит потеря тургора клетками надземной части, так как нарушается доставка воды. Наблюдается усиление распада белков и накопление в тканях растворимых форм азота. Изменяется функциональная активность мембран из-за перехода липидов из жидкокристаллического состояния в состояние геля.

Холодостойкость сельскохозяйственных культур можно усилить внесением калийных удобрений и предпосевным закаливанием семян. Наклюнувшиеся семена теплолюбивых культур (огурцы, томаты, дыня и др.) в течение нескольких суток выдерживают в чередующихся через 12 часов условиях низких (1-5 о) и более высоких (10-20 о) температур. Таким же способом можно затем закаливать рассаду. Холодостойкость повышается при замачивании семян в 0,25 % растворах микроэлементов или нитрата аммония.

Основными причинами гибели клеток растений при отрицательных температурах являются: 1) их обезвоживание и 2) повреждение клеточных структур из-за механического сжатия льдом. Обезвоживание возникает из-за оттягивания воды из клеток образующимися в межклетниках кристаллами льда. При длительном действии мороза кристаллы льда вырастают до значительных размеров и, помимо сжатия клеток, могут повреждать плазмалемму.

У морозоустойчивых растений повышено содержание ненасыщенных жирных кислот в клеточных мембранах. Поэтому фазовый переход липидов мембран из жидкокристаллического состояния в гель происходит при отрицательных температурах. В состоянии геля резко снижается проницаемость мембран. Кроме того, у морозоустойчивых растений активируется синтез криопротекторов – гидрофильных белков, моно- и олигосахаров. Вода, входящая в состав гидратных оболочек этих веществ, не замерзает и не выходит из клеток. Другой тип полимеров-криопротекторов - это гемицеллюлозы, выделяемые в клеточную стенку. Они обволакивают кристаллы льда и тормозят их рост.

12.4. Солеустойчивость

Растения, устойчивые к засолению, называют галофитами (от греч. galos - соль, Phyton - растение). Они отличаются от гликофитов - растений незасоленных водоемов и почв - рядом анатомических и метаболических особенностей. У гликофитов при засолении снижается рост клеток растяжением, нарушается азотный обмен и накапливается токсичный аммиак.

Все галофиты делят на три группы:

1. Настоящие галофиты (эугалофиты) - наиболее устойчивые растения, накапливающие в вакуолях значительные количество солей. Поэтому они обладают большой сосущей силой, позволяющей поглощать воду из сильно засоленной почвы. Для растений этой группы характерна мясистость листьев, которая исчезает при выращивании их на незасоленных почвах.

2. Солевыделяющие галофиты (криногалофиты), поглощая соли, не накапливают их внутри тканей, а выводят из клеток на поверхность листьев с помощью секреторных железок. Выделение солей железками осуществляется с помощью ионных насосов и сопровождается транспортом больших количеств воды. Соли удаляется с опадающими листьями. У некоторых растений избавление от избытка солей происходит без поглощения больших количеств воды, так как соль выделяется в вакуоль клетки-головки листового волоска с последующим ее обламыванием и восстановлением.

3. Соленепроницаемые галофиты (гликогалофиты) растут на менее засоленных почвах. Высокое осмотическое давление в их клетках поддерживается за счет продуктов фотосинтеза, а клетки малопроницаемы для солей.

Солеустойчивость растений увеличивается после предпосевного закаливания семян. Семена замачивают один час в 3 % растворе NaCl с последующим промыванием водой в течение 1,5 часа. Этот прием повышает устойчивость растений к хлоридному засолению. Для закалки к сульфатному засолению семена в течение суток вымачивают в 0,2 %-ном растворе сульфата магния.

12.5. Устойчивость к недостатку кислорода

Кислородная недостаточность (гипоксия) возникает при временном или постоянном переувлажнении, при заболачивании почвы, при образовании ледяной корки на озимых посевах и хранении сельскохозяйственной продукции. У растений, корни которых постоянно испытывают недостаток кислорода, в процессе длительной эволюции появились изменения в морфолого-анатомическом строении тканей: разрастание основания стебля, образование дополнительной поверхностной корневой системы и вентиляционных систем межклетников, необходимых для транспорта кислорода из надземной части растения в корни.

У некоторых растений для защиты от гипоксии активируется пентозофосфатный и гликолитический пути дыхания. В устойчивых к кислородному дефициту растениях не накапливаются токсичные продукты анаэробного распада. При недостатке кислорода как конечного акцептора электронов приспособительными оказываются процессы так называемого аноксического эндогенного окисления, в ходе которого электроны переносятся на такие вещества как нитраты, двойные связи ненасыщенных соединений (жирные кислоты, каротиноиды).

Для повышения устойчивости к гипоксии замачивают семена в растворах хлорхолинхлорида, никотиновой кислоты или сульфата марганца.

12.6. Газоустойчивость

Газоустойчивость - это способность растений сохранять жизнедеятельность при действии вредных газов. Токсичные газы, попадая в листья, образуют кислоты или щелочи. Это приводит к изменению рН цитоплазмы, разрушению хлорофилла, нарушению клеточных мембран. Для разных видов растений характерен свой безопасный для жизнедеятельности уровень накопления токсичных газов. Так, лох, тополь и клен более устойчивы к хлору и сернистому газу (SO 2), чем липа и каштан. Растения, устойчивые к засолению и другим стрессорам, имеют более высокую газоустойчивость.

Газоустойчивость растений повышается при оптимизации минерального питания и водоснабжения, а также в результате закаливания семян. Замачивание семян в слабых растворах соляной и серной кислот повышает устойчивость растений к кислым газам.

12.7. Радиоустойчивость

Различают прямое и косвенное действие радиации на живые организмы. Прямое действие энергии излучения на молекулу переводит ее в возбужденное или ионизированное состояние. Особенно опасны повреждения структуры ДНК: разрывы связей сахар-фосфат, дезаминирование азотистых оснований, образование димеров пиримидиновых оснований. Косвенное действие радиации состоит в повреждениях молекул, мембран, органоидов клеток, вызываемых продуктами радиолиза воды. Заряженная частица излучения, взаимодействуя с молекулой воды, вызывает ее ионизацию. Ионы воды за время жизни 10 -15 - 10 -10 сек способны образовать химически активные свободные радикалы и пероксиды. Эти сильные окислители за время жизни 10 -6 - 10 -5 сек могут повредить нуклеиновые кислоты, белки-ферменты, липиды мембран. Первоначальные повреждения усиливаются при накоплении ошибок в процессах репликации ДНК, синтеза РНК и белков.

Устойчивость растений к действию радиации определяется следующими факторами:

1. Постоянное присутствие ферментных систем репарации ДНК. Они отыскивают поврежденный участок, разрушают его и восстанавливают целостность молекулы ДНК.

2. Наличие в клетках веществ – радиопротекторов (сульфгидрильные соединения, аскорбиновая кислота, каталаза, пероксидаза, полифенолоксидаза). Они ликвидируют свободные радикалы и пероксиды, возникающие при облучении.

3. Восстановление на уровне организма обеспечивается у растений: а) неоднородностью популяции делящихся клеток меристем, которые содержат клетки на разных фазах митотического цикла с неодинаковой радиоустойчивостью, б) присутствием в апикальных меристемах покоящихся клеток, которые приступают к делению при остановке деления клеток основной меристемы, в) наличием спящих почек, которые после гибели апикальных меристем начинают активно функционировать и восстанавливают повреждение.

12.8. Устойчивость растений к патогенам

Устойчивость растений к патогенам определяется, как было установлено Х. Флором в 50-е годы 20 века взаимодействием комплементарной пары генов растения-хозяина и патогена, соответственно, гена устойчивости (R) и гена авирулентности (Аvr). Специфичность их взаимодействия предполагает, что продукты экспрессии этих генов участвуют в распознавании растением патогена с последующим активированием сигнальных процессов для включения защитных реакций.

Продукты экспрессии некоторых R генов установлены. Это белки и все они содержат повтор, богатый лейцином, а также протеинкиназный и нуклеотидсвязывающий домены. Домен белка, содержащий повтор, богатый лейцином, ответственен за связывание белка с белком, то есть отвечает за распознавание патогена. Протеинкиназный и нуклеотидсвязывающий домены участвуют в фосфорилировании белков и регуляции экспрессии защитных генов, соответственно.

Со стороны патогенов в процессе узнавания участвуют элиситоры. Это вещества, индуцирующие в устойчивых растениях экспрессию защитных генов. Растительные глюканазы, разрушая полисахариды клеточных стенок грибов и бактерий, превращают их в низкомолекулярные элиситоры (b-связанные глюканы и хитозан). Элиситором является и липогликопротеиновый комплекс (активная часть – ненасыщенные жирные кислоты: арахидоновая и эйкозапентаеновая). Элиситорными свойствами обладает углеводная часть маннан-содержащих гликопротеинов.

При разрушении пектиновых полисахаридов растительных клеточных стенок полигалактуроназами патогенов образуются особые вещества (сигналы тревоги), которые мигрируют в здоровые клетки, где индуцируют защитные реакции. Эти вещества получили название констуитивных или эндогенных элиситоров или олигосахаринов. Активной частью является додека-a-1,4-галактуронин, состоящий из 12 галактуронозильных остатков.

Растение распознает элиситоры своими рецепторами, расположенными в клеточной стенке и плазмалемме. Образование комплекса элиситор-рецептор включает защитные механизмы растения. Однако взаимодействию грибных элиситоров с рецепторами препятствуют супрессоры – низкомолекулярные глюканы, выделяемые гифой гриба и конкурирующие с элиситором за связывание с рецептором. Если супрессор связывается с рецептором, то защитные реакции не включаются.

Для грибов и бактерий известно, что их элиситоры связываются с внешним (локализованным снаружи плазмалеммы) участком белкового рецептора, расположенного в плазмалемме. В результате этого связывания происходит автофосфорилирование внешнего участка рецептора и изменение его конформации. Остаток фосфорной кислоты передается на внутренний участок рецептора, что также изменяет его конформацию. Следствием взаимодействия рецептора с элиситором является активация каскада передачи сигнала для возбуждения экспрессии защитных генов. В настоящее время известно 7 сигнальных систем: циклоаденилатная, MAP-киназная (mitogen-activated protein-kinase), фосфатидокислотная, кальциевая, липоксигеназная, НАДФ·Н-оксидазная (супероксидсинтазная), NO-синтазная.

В пяти первых сигнальных системах посредником между цитоплазматической частью рецептора и первым активируемым ферментом являются G-белки. Эти белки локализованы на внутренней стороне плазмалеммы. Их молекулы состоят из трех субъединиц: a, b и g. В состоянии покоя все субъединицы образуют комплекс, где a-субъединица связана с гуанозиндифосфатом. В результате конформационных изменений после связывания с элиситором рецептор присоединяется к G-белку. При этом гуанозиндифосфат отсоединяется от a-субъединицы и его место занимает гуанозинтрифосфат. После этого a-субъединица отделяется от двух других субъединиц и связывается с каким-либо эффектором, например, аденилатциклазой. Затем a-субъединица гидролизует гуанозинтрифосфат до гуанозиндифосфата, инактивируется, отделяется от эффектора и присоединяется к свободным b- и g-субъединицами. Таким образом, G-белки, связываясь с эффекторами, включают сигнальные пути.

Кратко рассмотрим каждую сигнальную систему.

Циклоаденилатная сигнальная система. Взаимодействие стрессора с рецептором на плазмалемме приводит к активации аденилатциклазы, которая катализирует образование циклического аденозинмонофосфата (цАМФ) из АТФ. цАМФ активирует ионные каналы, включая кальциевую сигнальную систему, и цАМФ-зависимые протеинкиназы. Эти ферменты активируют белки-регуляторы экспрессии защитных генов, фосфорилируя их.

MAP-киназная сигнальная система. Активность протеинкиназ повышается у растений, подвергнутых стрессовым воздействиям (синий свет, холод, высушивание, механическое повреждение, солевой стресс), а также обработанных этиленом, салициловой кислотой или инфицированных патогеном.

В растениях функционирует протеинкиназный каскад как путь передачи сигналов. Связывание элиситора с рецептором плазмалеммы активирует киназу киназы МАР-киназы. Она катализирует фосфорилирование цитоплазматической киназы МАР-киназы, которая активирует при двойном фосфорилировании треониновых и тирозиновых остатков МАР-киназу. Она переходит в ядро, где фосфорилирует белки-регуляторы транскрипции.

Фосфатидокислотная сигнальная система. В клетках животных G белки под воздействием стрессора активируют фосфолипазы C и D. Фосфолипаза С гидролизует фосфатидилинозитол-4,5-бифосфат с образованием диацилглицерола и инозитол-1,4,5-трифосфата. Последний освобождает Са 2+ из связанного состояния. Повышенное содержание ионов кальция приводит к активации Са 2+ -зависимых протеинкиназ. Диацилглицерол после фосфорилирования специфичной киназой превращается в фосфатидную кислоту, которая является сигнальным веществом в животных клетках. Фосфолипаза D непосредственно катализирует образование фосфатидной кислоты из липидов (фосфатидилхолин, фосфатидилэтаноламин) мембран.

У растений стрессоры активируют G белки, фосфолипазы С и D у растений. Следовательно, начальные этапы этого сигнального пути одинаковы у животных и растительных клеток. Можно предположить, что в растениях также происходит образование фосфатидной кислоты, которая может активировать протеинкиназы с последующим фосфорилированием белков, в том числе и факторов регуляции транскрипции.

Кальциевая сигнальная система. Воздействие различных факторов (красного света, засоления, засухи, холода, теплового шока, осмотического стресса, абсцизовой кислоты, гиббереллина и патогенов) приводит к повышению содержания ионов кальция в цитоплазме за счет увеличения импорта из внешней среды и выхода из внутриклеточных хранилищ (эндоплазматического ретикулума и вакуоли).

Повышение концентрации ионов кальция в цитоплазме приводит к активации растворимых и мембранносвязанных Са 2+ -зависимых протеинкиназ. Они участвуют в фосфорилировании белковых факторов регуляции экспрессии защитных генов. Однако было показано, что Са 2+ способен непосредственно влиять на человеческий репрессор транскрипции, не задействуя каскад фосфорилирования белков. Также ионы кальция активируют фосфатазы и фосфоинозитспецифичную фосфолипазу С. Регулирующее действие кальция зависит от его взаимодействия с внутриклеточным рецептором кальция - белком кальмодулином.

Липоксигеназная сигнальная система. Взаимодействие элиситора с рецептором на плазмалемме приводит к активации мембранносвязанной фосфолипазы А 2 , которая катализирует выделение из фосфолипидов плазмалеммы ненасыщенных жирных кислот, в том числе линолевой и линоленовой. Эти кислоты являются субстратами для липоксигеназы. Субстратами для этого фермента могут быть не только свободные, но и входящие в состав триглицеридов ненасыщенные жирные кислоты. Активность липоксигеназ повышается при действии элиситоров, заражении растений вирусами и грибами. Увеличение активности липоксигеназ обусловлено стимуляцией экспрессии генов, кодирующих эти ферменты.

Липоксигеназы катализируют присоединение молекулярного кислорода к одному из атомов (9 или 13) углерода цис,цис-пентадиенового радикала жирных кислот. Промежуточные и конечные продукты липоксигеназного метаболизма жирных кислот обладают бактерицидными, фунгицидными свойствами и могут активировать протеинкиназы. Так, летучие продукты (гексенали и ноненали) токсичны для микроорганизмов и грибов, 12-гидрокси-9Z-додеценовая кислота стимулировала фосфорилирование белков у растений гороха, фитодиеновая, жасмоновая кислоты и метилжасмонат через активирование протеинкиназ повышают уровень экспресии защитных генов.

НАДФ·Н-оксидазная сигнальная система. Во многих случаях заражение патогенами стимулировало продукцию реактивных форм кислорода и гибель клеток. Реактивные формы кислорода не только токсичны для патогена и инфицированной клетки растения-хозяина, но и являются участниками сигнальной системы. Так, перекись водорода активирует факторы регуляции транскрипции и экспрессию защитных генов.

NO-синтазная сигнальная система. В макрофагах животных, убивающих бактерии, наряду с реактивными формами кислорода действует окись азота, усиливающая их антимикробное действие. В животных тканях L-аргинин под действием NO-синтазы превращается в цитруллин и NO. Активность этого фермента была обнаружена и в растениях, причем вирус табачной мозаики индуцировал повышение его активности в устойчивых растениях, но не влиял на активность NO-синтазы в чувствительных растениях. NO, взаимодействуя с супероксидом кислорода, образует очень токсичный пероксинитрил. При повышенной концентрации окиси азота активируется гуанилатциклаза, которая катализирует синтез циклического гуанозинмонофосфата. Он активирует протеинкиназы непосредственно или через образование циклической АДФ-рибозы, которая открывает Са 2+ каналы и тем самым повышает концентрацию ионов кальция в цитоплазме, что в свою очередь, приводит к активации Са 2+ -зависимых протеинкиназ.

Таким образом, в клетках растений существует скоординированная система сигнальных путей, которые могут действовать независимо друг от друга или сообща. Особенностью работы сигнальной системы является усиление сигнала в процессе его передачи. Включение сигнальной системы в ответ на воздействие различных стрессоров (в том числе и патогенов) приводит к активации экспрессии защитных генов и повышению устойчивости растений.

Индуцированные механизмы: а) усиление дыхания, б) накопление веществ, обеспечивающих устойчивость, в) создание дополнительных защитных механических барьеров, г) развитие реакция сверхчувствительности.

Патоген, преодолев поверхностные барьеры и попав в проводящую систему и клетки растения, вызывает заболевание растения. Характер заболевания зависит от устойчивости растения. По степени устойчивости выделяют четыре категории растений: чувствительные, толерантные, сверхчувствительные и крайне устойчивые (иммунные). Кратко охарактеризуем их на примере взаимодействия растений с вирусами.

В чувствительных растениях вирус транспортируется из первично зараженных клеток по растению, хорошо размножается и вызывает разнообразные симптомы заболевания. Однако и в чувствительных растениях существуют защитные механизмы, ограничивающие вирусную инфекцию. Об этом свидетельствует, например, возобновление репродукции вируса табачной мозаики в протопластах, изолированных из зараженных листьев растений табака, в которых закончился рост инфекционности. Темно-зеленые зоны, образующиеся на молодых листьях больных чувствительных растений, характеризуются высокой степенью устойчивости к вирусам. Клетки этих зон почти не содержат вирусных частиц по сравнению с соседними клетками светло-зеленой ткани. Низкий уровень накопления вирусов в клетках темно-зеленой ткани связан с синтезом антивирусных веществ. В толерантных растениях вирус распространяется по всему растению, но плохо размножается и не вызывает симптомов. В сверхчувствительных растениях первично инфицированные и соседние клетки некротизируются, локализуя вирус в некрозах. Считается, что в крайне устойчивых растениях вирус репродуцируется только в первично зараженных клетках, не транспортируется по растению и не вызывает симптомов заболевания. Однако был показан транспорт вирусного антигена и субгеномных РНК в этих растениях, а при выдерживании зараженных растений при пониженной температуре (10-15 о С) на инфицированных листьях формировались некрозы.

Наиболее хорошо изучены механизмы устойчивости сверхчувствительных растений. Образование локальных некрозов является типичным симптомом сверхчувствительной реакции растений в ответ на поражение патогеном. Они возникают в результате гибели группы клеток в месте внедрения патогена. Смерть инфицированных клеток и создание защитного барьера вокруг некрозов блокируют транспорт инфекционного начала по растению, препятствует доступу к патогену питательных веществ, вызывают элиминацию патогена, приводят к образованию антипатогенных ферментов, метаболитов и сигнальных веществ, которые активируют защитные процессы в соседних и отдаленных клетках, и в конечном итоге, способствуют выздоровлению растения. Гибель клеток происходит из-за включения генетической программы смерти и образования соединений и свободных радикалов, токсичных как для патогена, так и для самой клетки.

Некротизация инфицированных клеток сверхчувствительных растений, контролируемая генами патогена и растения-хозяина, является частным случаем программированной клеточной смерти (PCD – programmed cell death). PCD необходима для нормального развития организма. Так, она происходит, например, при дифференциации трахеидных элементов в ходе образования ксилемных сосудов и гибели клеток корневого чехлика. Эти периферические клетки погибают даже тогда, когда корни растут в воде, то есть гибель клеток является частью развития растения, а не вызвана действием почвы. Сходство между PCD и гибелью клеток при сверхчувствительной реакции заключается в том, что это два активных процесса, в некротизирующейся клетке также повышается содержание ионов кальция в цитоплазме, образуются мембранные пузырьки, увеличивается активность дезоксирибонуклеаз, ДНК распадается на фрагменты с 3’ОН концами, происходит конденсация ядра и цитоплазмы.

Помимо включения PCD, некротизация инфицированных клеток сверхчувствительных растений происходит в результате выхода фенолов из центральной вакуоли и гидролитических ферментов из лизосом вследствие нарушения целостности клеточных мембран и увеличения их проницаемости. Снижение целостности клеточных мембран обусловлено перекисным окислением липидов. Оно может происходить при участии ферментов и неферментативным путем в результате действия реактивных форм кислорода и свободных органических радикалов. Выше было показано, что в растениях при заболевании увеличивалась активность фосфолипаз и липоксигеназ. Известны такие виды реактивного кислорода, как супероксидный (О 2 · -), пергидроксильный (НО 2 ·), который является протонированной формой супероксида, гидроксильный (ОН ·) радикалы, перекись водорода (Н 2 О 2), синглетно-возбужденный кислород (1 О 2). Реактивные формы кислорода постоянно присутствуют в растительных клетках в небольшом количестве, образуясь в процессе окислительно-восстановительных реакций. Очень быстрое накопление реактивных форм кислорода было показано для различных комбинаций растение-патоген и при обработке элиситорами. Окислительный взрыв происходил и при воздействии абиотических факторов: ультрафиолетового облучения (280-320 нм), повышенной температуре, осмотическом и механическом стрессах.

Нарушение целостности клеточных мембран и увеличение их проницаемости обусловлены также действием так называемого “киллера протопластов”, обнаруженного в некротизированных листьях сверхчувствительных растений табака, пораженных вирусом табачной мозаики или бактериями. Было показано, что водные экстракты некротизированных листьев токсичны для изолированных протопластов. В наших опытах на основании данных по гель-фильтрации и ионно-обменной хроматографии экстрактов некротизированных листьев растений табака сорта Ксанти нк было установлено, что “киллер протопластов” является кислым белком с молекулярной массой примерно 70 кДа.

Одним из характерных свойств сверхчувствительных растений является приобретенная (индуцированная) устойчивость к повторному заражению патогеном. Были предложены термины: системная приобретенная устойчивость (systemic acquired resistance - SAR) и локальная приобретенная устойчивость (localized acquired resistance - LAR). О LAR говорят в тех случаях, когда устойчивость приобретают клетки в зоне, непосредственно примыкающей к локальному некрозу (расстояние примерно 2 мм). В этом случае вторичные некрозы совсем не образуются. Приобретенная устойчивость считается системной, если она развивается в клетках больного растения, удаленных от места первоначального внедрения патогена. SAR проявляет

В последнее время в прессе и на телевидении часто обсуждают вопросы, связанные с генетически модифицированными растениями и потенциальным риском употребления продуктов питания, изготовленных из них. К сожалению, в таких дискуссиях часто побеждают эмоции, а не научная логика. Как результат в обществе возникает настороженное отношение к генетически модифицированным растениям и даже своеобразный «экологический терроризм». Когда в конце 1990-х из Германии в Юго-Восточную Азию хотели отправить партию генетически модифицированного риса, «зелёные» пошли на захват самолёта (!) и уничтожили всю партию семян. Прошлым летом в Австралии на территорию одного из научных центров проникли те же «зелёные террористы» и уничтожили посевы трансгенной пшеницы, над которыми исследователи работали около 10 лет. Эта акция отбросила назад исследования пшеницы и нанесла научному центру убытки, которые исчисляются миллионами долларов.

Это, конечно же, крайние проявления. Но каждого современного человека беспокоит вопрос: нужно ли бояться генетически модифицированных растений? Что они несут миру: пользу или вред? Однозначного ответа не существует. И с каждым конкретным случаем применения ГМО нужно разбираться отдельно.

Какие же проекты с участием трансгенных растений человечество разрабатывает сегодня?

Устойчивость к вредителям

Насекомые-вредители при вспышках численности могут уничтожать существенную часть урожая (если не весь урожай). Для борьбы с ними применяют довольно агрессивные вещества - пестициды (от лат. pestis - вредоносный бич, зараза и caedo - убивать). Пестициды уничтожают и вредных, и полезных насекомых (например пчёл, шмелей, жужелиц), оказывают влияние на почвенных обитателей, а при попадании в водоёмы пестициды могут вызвать гибель рыб. Применение пестицидов опасно в первую очередь для людей, работающих в сельском хозяйстве: именно они готовят растворы, проводят опрыскивания, работают в поле, пока пестицид продолжает действовать. К нам на стол попадает лишь ничтожная часть пестицидов, которые по большей части уже разложились. Избавиться от остатков пестицидов можно, тщательно вымыв овощи и фрукты или очистив кожицу.

Отказаться от применения пестицидов пока ещё нельзя: тогда размножатся вредители и человечество останется без урожая. А нельзя ли сделать культурные растения несъедобными для насекомых?

Здесь на помощь приходит генная инженерия растений. Насекомые, как и любые другие живые существа, болеют. Одно из заболеваний вызывает бактерия тюрингская палочка (Bacillus thuringiensis ). Она выделяет белок-токсин, нарушающий пищеварение у насекомых (но не у теплокровных животных!). Этот белок обозначают BT-токсин (от первых букв латинского названия тюрингской палочки). Дальше необходимо выделить ген, отвечающий за синтез ВТ-токсина, включить его в состав искусственного Т-района ДНК, размножить плазмиду в кишечной палочке, дальше перенести плазмиду в агробактерию с плазмидой-хелпером (об использовании агробактерий для генетической модификации растений - см. «Потенциал» №11). Т-район из агробактерии внедрится в геном растения (например, хлопчатника). На искусственной среде с антибиотиками можно отобрать трансформированные клетки и получить из них генетически модифицированные растения (рис. 6). Теперь в хлопчатнике будет синтезироваться ВТ-токсин, и он станет устойчивым к вредителям.

Вредители хлопчатника - актуальная проблема для тропических регионов. Так, вспышки численности хлопкового долгоносика в XIX–XX вв. были одной из причин экономических спадов в США. С 1996 года на поля внедряется генетически модифицированный хлопчатник, устойчивый к насекомым (в частности - к хлопковому долгоносику). В Индии - одной из лидирующих стран-производителей хлопка - на сегодня около 90% площадей заняты генетически модифицированным хлопком. Так что 9 шансов из 10, что вы уже носите «генетически модифицированные» джинсы! Как-то об этом в дискуссиях по ГМО не упоминают...

Заманчиво получить не только технические, но и пищевые растения, устойчивые к вредителям (например, картофель, устойчивый к колорадскому жуку). Это позволит фермерам существенно сократить расходы на обработку полей пестицидами и повысит урожай. Для того чтобы получить больше прибыли, ГМО, безусловно, необходимы. В нашей стране уже есть официальное разрешение на использование 4 сортов картофеля, устойчивого к колорадскому жуку: два сорта «наши», и два - иностранного происхождения. Но действительно ли такой картофель безопасен?

Появление в пище любого нового белка (например, ВТ-токсина) у чувствительных людей может вызывать аллергию, снижение общего иммунитета к заболеваниям и другие реакции. Но этот эффект возникает при любом изменении традиционного рациона. Например, все те же явления возникали просто при «внедрении» соевого белка: для европейцев он оказался потенциальным аллергеном, снижал иммунитет. То же самое будет с людьми, переезжающими на новое место, резко отличающееся по традициям питания. Так, для коренных народов Крайнего Севера опасной может оказаться молочная диета или питание обычным (заметим - нисколько не модифицированным!) картофелем. Русские бобы (Vicia faba ), которые традиционно использовали у нас в стране как овощ, ядовиты для жителей Средиземноморья и т. д. Всё это не означает, что нужно повсеместно бороться с употреблением сои, молока, картофеля или бобов, просто необходимо учитывать индивидуальную реакцию.

Таким образом, при внедрении генетически модифицированных пищевых растений часть людей окажется к ним довольно чувствительной, но другие так или иначе приспособятся. Но чувствительные люди должны точно знать, какие продукты приготовлены с применением ГМО.

Полезно знать, что сегодня в Россию можно ввозить и использовать в пищевых технологиях 16 сортов и линий генетически модифицированных растений - в основном устойчивых к тем или иным вредителям. Это кукуруза, соя, картофель, сахарная свёкла, рис. От 30 до 40% продуктов на современном рынке уже содержат компоненты, полученные из ГМО. Парадоксально, что при этом выращивать генетически модифицированные растения у нас в стране не разрешается.

В утешение скажем, что в США - стране, которая выращивает 2/3 мирового урожая генетически модифицированных растений - до 80% продуктов содержат ГМО!

Устойчивость к вирусам

Поражение растений вирусами уменьшает урожай в среднем на 30% (рис. 7). Для некоторых культур цифры потерь ещё выше. Так, при заболевании ризоманией теряется 50–90% урожая сахарной свёклы. Корнеплод мельчает, образует многочисленные боковые корни, содержание сахара снижается. Это заболевание впервые было обнаружено в 1952 году в Северной Италии и оттуда «победным маршем» в 1970-х гг. распространилось во Францию, на Балканский полуостров, а в последние годы - в южные регионы свеклосеяния нашей страны. Против ризомании не помогают ни химическая обработка, ни севооборот (вирус сохраняется в почвенных организмах не менее 10 лет!).

Ризомания - это всего лишь один пример. С развитием транспорта вирусы растений вместе с урожаем быстро перемещаются по планете, минуя таможенные барьеры и государственные границы.

Единственным эффективным способом борьбы со многими вирусными болезнями растения оказывается получение устойчивых генетически модифицированных растений. Для повышения устойчивости из генома вируса-возбудителя ризомании выделяют ген белка капсида. Если этот ген «заставить» работать в клетках сахарной свёклы, то резко повышается устойчивость к «ризомании».

Есть и другие проекты, связанные с повышением устойчивости к вирусам. Например, огурцы, дыни, арбузы, кабачки и тыква поражаются одним и тем же вирусом мозаики огурца. Кроме того, в круг хозяев входят томаты, салат-латук, морковь, сельдерей, многие декоративные и сорные растения. Бороться с вирусной инфекцией очень трудно. Вирус сохраняется на многолетних растениях-хозяевах и на остатках корневой системы в почве.

Как и в случае с ризоманией, против вируса мозаики огурца помогает образование белка его собственного капсида в растительных клетках. На сегодня получены устойчивые к вирусу трансгенные растения огурцов, кабачков и дыни.

Ведутся работы и по повышению устойчивости к другим вирусам сельскохозяйственных растений. Но пока ещё, за исключением сахарной свёклы, устойчивые генетически модифицированные растения мало распространены.

Устойчивость к гербицидам

В развитых странах расходам на горюче-смазочные материалы все больше предпочитают «разориться» на разнообразные химикаты. Одна из важных статей расходов - вещества, уничтожающие сорняки (гербициды ). Применение гербицидов позволяет лишний раз не гонять тяжёлую технику по полю, меньше нарушается структура почвы. Слой отмерших листьев создаёт своеобразную мульчу, которая уменьшает эрозию почвы и сберегает влагу. Сегодня разработаны гербициды, которые в течение 2–3 недель полностью разлагаются в почве микроорганизмами и практически не наносят вреда ни животным, обитающим в почве, ни насекомым-опылителям.

Однако у гербицидов сплошного действия есть существенный недостаток: они действуют не только на сорные, но и на культурные растения. Есть определённый успех в создании так называемых селективных гербицидов (таких, которые действуют не на все растения, а на какую-то группу). Например, есть гербициды против двудольных сорняков (см. в статье об ауксинах, «Потенциал» №7). Но при помощи селективных гербицидов невозможно уничтожить все сорняки. Например, останется пырей - злостный сорняк из семейства злаковых.

И тогда возникла идея: сделать культурные растения устойчивыми к гербицидам сплошного спектра действия! Благо, у бактерий есть гены, отвечающие за разрушение многих гербицидов. Достаточно просто пересадить их в культурные растения. Тогда вместо постоянных прополок и рыхления междурядий над полем можно распылить гербицид. Культурные растения выживут, а сорняки погибнут.

Именно такие технологии предлагают фирмы, производящие гербициды. Причём выбор трансгенных семян культурных растений зависит от того, какой гербицид фирма предлагает на рынке. Каждая фирма разрабатывает растения-ГМО, устойчивые к своему гербициду (но не к гербицидам конкурентов!). Ежегодно в мире на полевые испытания передают 3–3,5 тыс. новых образцов растений, устойчивых к гербицидам. Даже испытания устойчивых к насекомым растений отстают от этого показателя!

Устойчивость к гербицидам уже широко применяется при выращивании люцерны (кормовая культура), рапса (масличное растение), льна, хлопчатника, кукурузы, риса, пшеницы, сахарной свёклы, сои.

Традиционный вопрос: опасно или безопасно выращивание таких растений? Технические культуры (хлопок, лён), как правило, не обсуждают: их продукты человек не использует в пищу. Конечно, в генетически модифицированных растениях появляются новые белки, которых прежде не было в пище человека, со всеми вытекающими отсюда следствиями (см. выше). Но есть ещё одна скрытая опасность. Дело в том, что применяемый в сельском хозяйстве гербицид - это не химически чистое вещество, а некоторая техническая смесь. В неё могут добавлять детергенты (для улучшения смачивания листьев), органические растворители, промышленные колоранты и другие вещества. Если содержание гербицида в конечном продукте строго контролируют, то за содержанием вспомогательных веществ, как правило, следят плохо. Если содержание гербицида будет сведено к минимуму, то о содержании вспомогательных веществ остаётся только догадываться. Эти вещества могут попадать также в растительное масло, крахмал и другие продукты. В будущем предстоит разрабатывать нормативы на содержание этих «неожиданных» примесей в конечных продуктах.

Суперсорняки и «утечка генов»

Успехи в создании генетически модифицированных растений, устойчивых к вредителям и гербицидам, породили ещё одно сомнение: а вдруг сорняки каким-то образом «завладеют» генами, встроенными в геном культурных растений, и станут устойчивыми ко всему? Тогда появится «суперсорняк», который будет невозможно истребить ни с помощью гербицидов, ни с помощью насекомых-вредителей!

Такой взгляд по меньшей мере наивен. Как мы уже говорили, фирмы-производители гербицидов создают растения, устойчивые к производимому гербициду, но не к гербицидам конкурентов. Даже в случае приобретения одного из генов устойчивости можно использовать другие гербициды для борьбы с «суперсорняком». Устойчивость к насекомым ещё не определяет устойчивости к любым вредителям. Например, нематоды и клещи смогут по-прежнему поражать это растение.

Кроме того, остаётся неясным, каким образом сорняк приобретёт гены от культурного растения. Единственная возможность - если сорное растение является близким родственником культурному. Тогда возможно опыление пыльцой генетически модифицированного растения, и произойдёт «утечка генов». Это особенно актуально в районах древнего земледелия, где в дикой природе до сих пор обитают виды растений, близкие к культурным. Например, из трансгенного рапса с пыльцой новые гены могут переноситься на сурепку или дикие виды рода Капуста (Brassica ).

Гораздо важнее, что посадки трансгенных растений вызывают «загрязнение» местного генетического материала. Так, кукуруза относится к ветроопыляемым растениям. Если один из фермеров посадил трансгенный сорт, а его сосед - обычный, возможно переопыление. Гены из генетически модифицированного растения могут «утечь» на соседнее поле.

Верно и обратное: растения-ГМО могут опыляться пыльцой обычных сортов, и тогда в следующих поколениях уменьшится доля генетически модифицированных растений. Это произошло, например, в Австралии при первых попытках внедрить генетически модифицированный хлопчатник: признак устойчивости к насекомым «пропал» из-за «разбавления» пыльцой обычных сортов с соседних полей. Пришлось более внимательно отнестись к семеноводству хлопчатника и внедрять устойчивые сорта ещё раз.


В одной пикниде на устойчивых сортах насчитывается в 2-2,5 раза меньше спор. Чем устойчивее сорт, тем меньше образуется на нем колоний возбудителя мучнистой росы, тем медленнее вдет процесс споруляции и динамика эпифитотического процесса.
Разные по устойчивости к вилту сорта хлопчатника образуют разное количество микросклероциев на листьях, что обусловливает различный потенциал возбудителей в почве:



Восприимчивый сорт накапливает в 4-6 раз больше склероциев в почве, чем устойчивые сорта.
В мировой практике имеются примеры, когда возделывание устойчивых сортов становилось решающим фактором не только сохранения урожая и качества продукции, но и самой культуры. Так, устойчивые к вирусным болезням сорта растений разрешили проблему производства сахара в Западном полушарии, так как без них в начале XX века от мозаики почти полностью погибла популяция сахарного тростника, а в 20-х годах курчавость верхушки вызвала массовую гибель плантаций сахарной свеклы. В США созданы сорта пшеницы, устойчивые к гессенской мухе, хлебным пилильщикам; кукурузы - к кукурузному мотыльку, хлопковой совке; картофеля - к сосущим вредителям - переносчикам вирусов; люцерны - к люцерновой пятнистости и гороховой тле, люцерновому долгоносику. До 10 % прибыли от растениеводства в США получают благодаря успехам в селекции. По данным министерства сельского хозяйства США, окупаемость расходов на выведение новых сортов с комплексной устойчивостью к болезням составляет 1:300, а окупаемость создания новых пестицидов (без учета ликвидации отдаленных последствий их применения) - примерно 1:10, или в 25-30 раз ниже.
В Германии созданы сорта картофеля, устойчивые к картофельной нематоде. При этом количество жизнеспособных цист в почве за одну вегетацию снижается на 40-60 %. В странах СНГ выведены сорта озимой пшеницы, обладающие повышенной устойчивостью к вредной черепашке (Одесская 51, Орбита, Днепропетровская), сорта яровой пшеницы - с повышенной устойчивостью к гессенской и яровой мухам, хлебным пилильщикам. Выведение сортов озимой пшеницы, устойчивых к гессенской мухе, за последние 35 лет сняло проблему защиты этой культуры в Черноземной зоне.
Признак устойчивости сорта сохраняется пять и более лет. Новые сорта, будучи средообразователями , вносят в агроэкосистемы целый ряд изменений:
- в качество пищи для вредных организмов;
- во временные связи вредных организмов с растениями;
- в экологические ниши;
- в микроклиматические условия;
- в связи вредных организмов в сообществе биологических видов (энтомофагами, антагонистами, эпифитами и др.).
Поэтому районирование любого сорта сопровождается его всесторонней оценкой в конкурсном и государственном сортоиспытаниях. В США оценку сортов картофеля, например, ведут в четырех разных природно-климатических условиях по 15 показателям, в том числе по устойчивости к вирозам, бактериозам, микозам, фитофагам - насекомым, клещам.
При выращивании устойчивых сортов существует (как и при использовании пестицидов) проблема появления резистентных форм вредных организмов. Недолговечность сортов, состоящих из одной или немногих линий с однородной генетической основой, свидетельствует о том, что устойчивость сортов к вредным организмам надо не только создавать, но и сохранять агротехническими приемами в процессе их возделывания.
Существует несколько приемов для сохранения устойчивости сортов к вредным организмам:
- возделывание сортов, различающихся генетическими системами невосприимчивости, создание мозаики или решетки устойчивых сортов в районах возделывания сельскохозяйственных культур, их периодическая замена (чередование). Это направление в защите растений получает все большее признание в Западной Европе. В Великобритании с 1976 года применяют схемы чередования сортов ярового ячменя, устойчивых к мучнистой росе, и сортов озимой пшеницы, устойчивых к ржавчине. В Баварии чередуют 14 сортов озимой пшеницы, относительно устойчивых к мучнистой росе;
- возделывание многолинейных сортов. Это направление в интегрированной защиты растений получило распространение в США и Европе. В Европе, например, распространяются сортосмеси озимого и ярового ячменя против мучнистой росы. Для этого используют 17 сортов с семью различными факторами специфической устойчивости. Благодаря этому пораженность посевов мучнистой росой снизилась на 40-60%, понизились также затраты на применение фунгицидов. Эффект сортосмесей объясняется снижением пространственной восприимчивости растений, индукцией устойчивости, затрудняющей приспособление вредных организмов к популяции хозяина. Сортосмеси позволяют реализовать принцип саморегулирования агроэкосистем, отвечающий требованиям экологического направления в защите растений;
- возделывание сортов с частичной устойчивостью. Такие сорта замедляют скорость ЭП, интенсивность размножения вредных организмов и общее поражение растений. Благодаря этому снижается средний уровень численности вредных организмов и кратность применения пестицидов, особенно против r-стратегов. Устойчивость к вредным организмам сочетается в лучших сортах с устойчивостью к стресс-факторам внешней среды.
В Сибири местные сорта отличаются повышенной устойчивостью к неблагоприятным факторам внешней среды, повышенной полевой всхожестью и выживаемостью в течение вегетации. Сибирские сорта должны иметь признаки засухоустойчивости, холодостойкости и достаточной скороспелости. Эти свойства важно сочетать в сорте с адаптивностью: способностью “пережидать стресс-факторы", быстро возобновить метаболизм после их прохождения. При этом рост как интегральный процесс является одним из важнейших в реакции генотипа на комплекс биотических факторов (вредные организмы) и абиотических (дефицит влаги, низкие температуры, недостаток или избыток минеральных веществ).
В настоящее время в Сибири широко возделываются сорта яровой пшеницы двух типов: 1) пластичные к климатическим условиям, особенно к засухе, обладающие умеренной потенциальной продуктивностью - Целинная 20, Целинная 60, Саратовская 29, Вега, Ботаническая 2 и 2) сорта интенсивного типа, обладающие высокой потенциальной продуктивностью, которая реализуется при благоприятных климатических и агротехнических условиях (хорошей влагообеспеченности, наличии необходимого количества элементов питания и защите от вредных организмов). К ним относятся: Омская 9, Новосибирская 67, Россиянка, Алтайская 81, Кантегирская 89. Соотношение сортов этих двух типов в структуре посевных площадей Алтайского края, например, варьируется от 40 до 60 %. В более засушливых климатических условиях левобережья реки Оби Алтайского края большую устойчивость к стресс-факторам и более высокую урожайность обеспечивают сорта первой группы - Саратовская 29, Целинная 20. Целинная 60. Алтайка, а в более увлажненных условиях правобережья и в предгорных районах - второй группы - Россиянка, Алтайская 81, частично Новосибирская 67, Вега. В годы с хорошим весенним запасом влаги расширяют посевы сортов интенсивного типа, высевая их по лучшим предшественникам - пару, используя при необходимости средства защиты растений. В засушливые весны после малоснежной зимы, недостатке влаги в почве расширяют посевы сортов первой группы, особенно по непаровым предшественникам. В этих условиях сорта с адаптивной устойчивостью к стрессам обладают более высокой устойчивостью к вредным организмам, особенно корневым гнилям, формируя повышенную урожайность зерна по сравнению с сортами интенсивного типа. Реализация присущих сортам устойчивости и адаптивности в значительной мере зависит от агротехнических приемов их возделывания.
При разработке мероприятий по сохранению сортами устойчивости к вредным организмам с помощью агротехнических приемов необходимо учитывать расовый состав вредных организмов. Это обусловлено тем, что при районировании даже устойчивых сортов с вертикальной устойчивостью отмечается незначительное поражение их отдельными агрессивными расами. Например, при возделывании устойчивого к вилту сорта Ташкент в очагах сильного развития заболевания (70-80 %) уже в первый год отмечались штаммы гриба, способные поражать отдельные растения в сильной степени. Известно, что природные популяции фитопатогенных грибов и других вредных организмов неоднородны и состоят из многих рас, биотипов, различающихся по вирулентности, которая коррелирует со способностью патогенов выживать и размножаться в благоприятных условиях.
Для рациональной разработки комплекса мероприятий по сохранению сортами присущей им устойчивости следует знать реакцию сортов на расовый состав популяций вредных организмов в регионе, классифицирую их по четырем группам:
- иммунные (абсолютно невосприимчивые);
- устойчивые (резистентные);
- толерантные (выносливые);
- восприимчивые.
Ограничение и подавление болезней достигается при возделывании минимум двух иммунно-генетически различных сортов. Нецелесообразно производить резкую смену одного сорта на другой, имеющих иммунные отличия из-за опасности появления резистентных форм возбудителей. При этом устойчивость сорта следует сочетать с агротехническими приемами, подавляющими развитие болезней. Например, для поддержания сортов, устойчивых к вилту, их включают в фитосанитарные севообороты с люцерной по схеме: фитосанитарный предшественник два года (люцерна) - устойчивый сорт - выносливый сорт - фитосанитарные культуры (зерновые) - выносливый сорт - устойчивый сорт*. Фитосанитарные культуры, входящие в севооборот, обеспечивают снижение общего инфекционного потенциал? возбудителей в почве, а посев устойчивых, выносливых сортов стимулирует отбор менее агрессивных и вирулентных рас болезней и вредителей, предупреждая эпифитотии болезней.
Одним из важнейших мероприятий по сохранению сортами устойчивости к вредным организмам является также научно-обоснованная система внесения удобрений, сроков посева, семеноводства. Семенные участки должны размещаться на здоровых почвах по возможности в зонах слабого развития вредных организмов при соблюдении оптимальных технологических параметров. Тем самым создается фундаментальная предпосылка для комплексной устойчивости и выносливости растений к вредным организмам - фонд здоровых семян, а также присущая сорту устойчивость и выносливость ко всему комплексу биотических и абиотических стрессоров.

Иммунитет растений к инфекционным болезням является наследственным признаком и контролируется генетически.

Устойчивость растений может быть обусловлена как одной, так и несколькими парами генов. В частности, у картофеля установлено наличие девяти генов устойчивости к фитофторе, обозначаемых буквой R (R 1 , R 2 … и т. д.). У разных видов пшениц обнаружено около 20 генов устойчивости к стеблевой ржавчине, которые также пронумерованы (Sr 1 , Sr 2 … и т. д.). Гены устойчивости к стеблевой ржавчине овса обозначены буквами А, В, D, Е, F…

Гены, контролирующие устойчивость, делят на олигогены, т. е. гены, проявляющие сильное фенотипическое действие, и полигены, т. е. гены, оказывающие слабое фенотипическое действие. Некоторые авторы употребляют для обозначения этих групп генов еще термины «главные» гены (major genes) и «малые» гены (minor genes).

Различают моногенную и полигонную устойчивость растений. Монотонная устойчивость, называемая еще вертикальной, означает устойчивость к одним расам патогена и поражаемость другими. Она контролируется главными генами, или олигагенами. Эта устойчивость обусловливает, в частности, реакцию «сверхчувствительности». Другой, хорошо изученный тип устойчивости - полигенный, или горизонтальная, или полевая устойчивость - контролируется полимерными генами. Она определяет ту или иную степень устойчивости и замедляет развитие болезни после ее начала. Кроме того, снижая степень заражения растения, горизонтальная (половая) устойчивость может уменьшить количество заразного (инфекционного) начала, зимующего в больных частях растения, и тем самым задержать начало массового развития болезни в следующем году.

Этот тип устойчивости сильно зависит от внешних условий, определяющих развитие патогена и фенотип растения-хозяина. Среди них большую роль играет рельеф участка выращивания растения, состав почвы, виды и количество удобрений, густота и сроки посадки растений, температура и т. д.

С сожалением приходится отметить, что изучение биохимической стороны генетики иммунитета растений находится в настоящее время на самом начальном этапе. Имеющиеся по этому вопросу данные относятся лишь к случаям олигогенной устойчивости, контролируемой небольшим числом генов. Что касается полигенной устойчивости, то для ее изучения на физиолого-биохимическом уровне пока еще нет достаточно апробированных методических подходов.

В настоящее время начато генетическое изучение форм окислительных ферментов, участвующих в реакциях иммунитета, исследуются температурочувствительные гены устойчивости. Однако эти исследования пока все еще немногочисленны.

Из изложенного следует, что изучение генетических основ иммунитета растений должно привлечь более широкое внимание исследователей, что позволит им принять действенное участие в разработке биологически обоснованной селекции растений на устойчивость к болезням.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Статьи по теме